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ABSTRACT

We study finite difference approximations to weak solutions of the Cauchy

problem for hyperbolic systems of conservation laws in one space dimension.

We establish stability in the total variation norm and convergence for a class

of hybridized schemes which employ the random choice scheme together with

perturbations of classical conservative schemes. We also establish partial

stability results for classical conservative schemes. Our approach is based

on an analysis of finite difference operators on local and global wave

configurations.

AMS (MOS) Subject Classifications: 35L65, 35L66

Key Words: finite difference schemes, conservation laws,
Cauchy problems, shocks and singularities

Work Unit Number 1 (Applied Analysis)

*

Department of Mathematics, University of Wisconsin-Madison, Madison,
Wisconsin 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS77-16049 and a Sloan Foundation Fellowship.

,...'!- --



SIGNIFICANCE AND EXPLANATION

We are concerned with the numerical computation of shock waves using

finite difference schemes. Specifically, we study problems concerning the

stability and convergence of finite difference approximations and problems of

describing the propagation of physical and numerical waves.
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FINITE DIFFERENCE SCHEMES FOR CONSERVATION LAWS

Ronald J. DiPerna*

1. INTRODUCTION.

We are concerned with finite difference approximations to weak solutions of

the Cauchy problem for hyperbolic systems of conservation laws of the form

(1.1) U + f(u)x = 0, - < x < •

Here the solution u = u(x,t) takes on values in Rn and f is a smooth

nonlinear mapping from Rn to Rn. We assume that the system is strictly

hyperbolic in the sense that the Jacobian matrix Vf(u) has n real and

distinct eigenvalues

I (u) < X 2(u) < ... < X n(U)

and we require that each eigenvalue X, is either genuinely nonlinear or

linearly degenerate in the sense of Lax (20], i.e. either

(1.2) r.*V 0 or r.*VX. 0
J J J J

for each index j where r. = rj(u) denotes the corresponding right

eigenvector of Vf(u). Systems with this structure arise in several branches of

continuum mechanics: fluid dynamics, MHD, elasticity, etc.

Experience with (1.1) has indicated that the space BV of functions of

bounded variation provides a natural setting for the solution operator. It is

known for example that if the initial data u0 (x) lie in a small neighborhood

-- n
of a fixed state u E R and have small total variation, then a subsequence of

the family of difference approximations u(x,t,Ax) generated by the random

choice method of Glimm converges pointwise a.e. to a solution u [12].
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Moreover, the entire family is stable in the total variation norm in the sense

that

(1.3) TVu(,t,Ax) 4 const TVu 0

where the constant depends only on f and u; corresponding estimates hold in

the limit for u. In the case of data with large total variation, analogous

stability and convergence results for the random choice method have been

obtained for certain special systems [1, 7, 8, 17, 24, 25, 28, 29]. These

results motivate the problem of determining the mechanisms which induce or

preclude stability in the total variation norm for standard finite difference

schemes, i.e. schemes which are conservative in the Lax-Wendroff sense [22].

We note that the problem of establishing stability for conservative

difference schemes in any of the natural spaces for (1.1), e.g. BV, L , L2 and

convergence remains open except in the case of first order accurate methods

applied to scalar conservation laws [5, 30, 341: in the case n = I the

structure of the equation induces maximum principles for the corresponding exact

solution operator in BV and Lp , 1 4 p < -; these maximum principles are

preserved by the difference operators of those schemes which are precisely first

order accurate. With regard to L2-stability and its relationship to proper

entropy production, we refer the reader to the work of Majda and Osher (27] on

second order accurate schemes applied to scalar equations. In connection with

the related role of L -stability and action of the exact solution operator in

the weak topology, we reference the work of Tartar [32] on the theory of

compensated compactness, which contains several convergence results for exact

solutions to general scalar conservation laws and their associated parabolic

regularizations. In the computational setting, we refer the reader to the work

of Chormn 2, 3, 41 on the implementation of the random choice method for

reacting (and non-reacting) gas flow, to the work of Glimm, Marchesin and
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McBryan [14, 15, 16] on hybridized approaches involving the random choice method

together with procedures of subgrid refinement and wave tracking, to Crandall

and Majda [35] on fractional step methods and to Engquist and Osher (36] on one-

sided difference approximations.

In this paper we are primarily concerned with theoretical aspects of

stability in the total variation norm and convergence for general finite

difference schemes for systems of equations. We note that stability of the form

(1.3) for a family of approximate solutions guarantees the existence of a

subsequence converging pointwise a.e., 7;ce equations of the form (1.1) link

the temporal and spatial variations of u; convergence of the entire family

follows from uniqueness, in those particular circumstances where uniqueness is

available [9]. One may, of course, entertain growth estimates on the total

variation norm which are uniform in the mesh length.

We begin in Section 2 by formulating a new class K of difference schemes

which are conservative in the Lax-Wendroff sense; the class K arises from a

discrete approximation to the contour integral form of system (1.1) taken with

respect to parallelograms having space-like sides in the x-t plane. The

standard conservative schemes with a three-point domain of dependence can be

subsumed by K after introducing a fractional step. In Section 8 we introduce

a new class of hybridized schemes which employ the random choice method to

approximate shock waves and perturbations of a certain class N of first order

accurate schemes in K to approximate the continuous regions of flow; these

hybridized schemes are based on the tracking of waves whose magnitudes lie

between two specified thresholds depending on the mesh length. In the case of

initial data with small total variation, we establish stability in the total

variation norm and pointwise a.e. convergence of the difference approximations

generated by the hybridized schemes applied to a class of systems of two

-3-



equations, cf. Sections 10 and 11. This class includes systems of the form

(1.4) v + p(w) = 0, w + q(v) = 0t x t x

where p'q' > 0, e.g. the isentropic equations of gas dynamics and the

equations for thin elastic beams in Lagrangian coordinates. In Section 12, we

verify that the solutions constructed by these hybridized methods satisfy the

entropy condition of Lax (21]. For general systems of n equations we obtain

certain partial results concerning stability in the total variation norm for the

aforementioned subclass N of first order accurate conservative schemes; the

subclass N includes the Lax-Friedrichs scheme, cf. Section 4. For both the

conservative and hybridized schemes, the total variation estimates are obtained

with the aid of non-monotone functionals which are equivalent to the total

variation norm, cf. Sections 4, 5 and 9.

The form of these functionals for schemes in class N is motivated by an

analysis of the corresponding difference operators on discrete wave

interactions. In Sections 3 and 4 we describe a general approach to the problem

of analyzing difference operators on local and global wave configurations and

apply it to the subclass N. For the purpose of analyzing the local action, we

formulate a working notion of local discrete wave interaction which is based on

a process of interpolating elementary waves between adjacent mesh points. We

then study the relations which govern the magnitudes of the incoming and

outgoing waves in a local interaction, cf. Sections 3, 5 and 7. In order to

describe the global action, we introduce a state space il of global wave

configurations X and associate, with a given scheme, a mapping
M:

such that each of the difference approximations u generated by the scheme

corresponds to a discrete trajectory of the form

{M Xo : k = 0,1,2,...}

-4-
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when X0  represents the initial data, cf. Section 4. The generic state X

in 9 consists of a sequence of local states Xk which record the structure of

the local waves in u. Specific local states Xk are associated with a given

finite difference approximation u by applying an interpolation map
Rn Rn  Rn

I: xR *

to pairs of values of u at adjacent mesh points; the map I transforms a pair

(v,w) in Rn x Rn into a set

l1 (VW) .... Cn (VW))

of elementary wave magnitudes c.(v,w) associated with the classical solution

of the Riemann problem for (1.1) with Riemann data (v,w). For concreteness, we

restrict our attention in this paper to three-level schemes which employ a

stencil based on four mesh points; we note that the Lax-Friedrichs scheme and

the random choice scheme can be regarded as having this form, while the Lax-

Wendroff scheme can be viewed as a composition of two such schemes. For

stencils with that geometry, the associated space 2 consists of states

X = Xk where Xk lies in R3n and assumes the form

kX = (6,y,s)

Here s represents the value of the difference approximation u at a specified

mesh point (x,t) while 6 = (61 ...,6 ) and y = (y n... ) denote sets of1' n

interpolated wave magnitudes associated with the mesh points immediately to the

left and right of (x,t).

In the framework of the space Q, we formulate working definitions of

approximate simple wave and weakly interacting state and we identify several

classes A of such states which are attracting from the marching map M of

schemes in class N in the sense that the restriction of the orbit MkX to

Ac runs down-hill with respect to associated "coercive" potential functionals

QA" The reduction which these potentials QA experience in one time-step

-5-
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acting on states X in AC exceeds the corresponding increment to the total

variation norm due to numerical and/or physical wave amplification. This

property yields a uniform estimate on the total variation norm for those

segments of the orbit which lie in AF and have an initial point with small

total variation. This partial stability result for schemes in class N serves

as the starting point of our analysis of the hybridized schemes.

Preliminary to the construction of the potential functionals, we compare in

Section 3 the behavior of the exact solution with that of the difference

operators in class N on local wave interactions. In the setting of 0, a

discrete interaction consists of a collection of pairs of mesh points together

with the corresponding sets of interpolated wave magnitudes. In the case of

waves with small maanitude, a Taylor expansion of the equations relating the

incoming and outgoing magnitudes produces a set of dominant terms with a fairly

clear numerical interpretation; a comparison with the corresponding expansion

derived by Glimm [12] for random choice interactions or, what is the same up to

quadratic terms, exact wave interactions reveals several numerical mechanisms

which are absent in the exact solution operator. As a preliminary step in the

direction of classifying the numerical modes of wave propagation, we discuss in

the setting of class N several numerical processes whirh we refer to as self-

interaction, splitting and incomplete cancellation, cf. Section 3. These

processes are reflected in the structure of the potential functionals QA.

The motivation for a general study of potential functionals in the context

of conservative difference schemes is the following. We recall that, for the

exact solution operator, wave interactions typically increase wave maqnitudes:

an exact solution u(x,t) to a system of equations generally admits a countable

set of times tn such that

lim TVu(-,t) > TVu(.,t
nt 

n
n

-6-

,I



On the other hand, in the setting of the random choice method, Glimm

demonstrated that a potential for wave interaction can be attributed t- _ach

wave configuration through a quadratic functional Qrc(u) in such a way that

all weak interactions reduce Qrc more than they augment the total variation

norm (12]. The potential Qrc is quadratic in the sense that

C(TVu) ( Qc(u) ( c 2(TVu)

while non-increasing and compensating in the sense that

Qrcu(.,t,&x)1 and F(u) - TVu(*,t,Ax) + Q {u(*,t,Ax)}
rc rc

are both nonincreasing functions of time, if the initial data of the random

choice approximations u(x,t,Ax) have small total variation. The structure

of Qrc is discussed in Section 7. The stability estimate (1.3) follows from

the equivalence of F and TV on small data.

These results motivate the problem of constructing potentials for standard

difference schemes which compensate for both the physical and numerical

amplification waves. Now, in the setting of conservative difference schemes two

new features arise. The first is associated with the existence of numerical

modes of wave propagation; it is not difficult to show for example that, as a

consequence of augmented wave amplification, there exist no compensating

potentials which are monotone and depend, as Qrc does, only on the magnitudes

of waves in a given configuration. The second is associated with the existence

of a substantial class of states X representing shock profiles which are

reproduced by the scheme after a finite number of time steps module a spatial

translation, i.e.

q =

Clearly any translation invariant monotone function must be constant alonq the

entire orbit correspondinq to each shock profile X. we note that the existence

of shock profiles for a broad class of conservative schemes has been established
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by Majda and Ralston (281 in the context of systems of equations and by Jennings

(181 in the context of scalar equations; numerical evidence has indicated that

such states are stable.

The existence of numerical wave amplification and shock profiles motivates

the study of functionals which appeal to the geometric strucuture of wave

configurations in addition to information on their individual wave magnitudes

and which are non-monotone when restricted to orbits MkX . In particular it

leads one to ask if there exist special classes A of states containing the

shock profiles and corresponding potentials QA which are coercive on Ac in

the sense that

2
(1.5) A(MX) - A(X) < - A(X)

if X C Ac , where A (X) denotes the distance from X to A in some metric
A

on Q and compensating on Ac  in the sense that

(1.6) TV(MX) + Q A(MX) < TV(X) + Q A(X)

if X c Ac . If such potentials exist and if the scheme under consideration is

in fact convergent, one might expect that the structure of states in A and/or

the coercive behavior of QA woulI permit only a mild growth independent of the

mesh length for the functional F = TV + QA along the entire orbit.

In Section 5 we construct potentials QA for the class N where the role

of A is played by certain classes of approximate simple waves and by certain

classes of weakly interacting states. The functionals QA are not monotone

when restricted to the orbit MkX but do exhibit a rather strong coercive

behavior on Ac , satisfying inequalities of the form (1.5) and (1.6) on A

here the quantity A 2(X) does not arise exactly as the square of a distance
A

from X to A in a fixed metric on Q but rather involves the square of a

variable distance from X to a subclass of A. We conjecture that, along the

entire orbit, the corresponding functionals F =TV + QA for schemes in class
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N experience only a mild growth independent of the mesh length. For the

hybridized schemes we show that this is in fact the case by appealing to the

improved resolution of local wave interactions which hybridization affords.

2. CONSERVATIVE DIFFERENCE SCHEMES.

In this section we formulate a new class of difference schemes which are

conservative in the Lax-Wendroff sense [22]; the motivation is the following.

Suppose u = u(x,t) is a distributional solution in BV r L to a system of

conservation laws (1.11: the vector-field (f(u),u) is divergence-free in the

sense that the sum of the measures ut  and fx vanishes on all Borel sets 9,

(2.1) {ut + f(u) }(B) = 0tx

Green's theorem for measures [10, 331 yields an equivalent formulation by

requiring that the integral of the normal component of (f,u) vanish for all

piecewise smooth closed contours C:

(2.2) f Vtu + V f(u)ds = 0
C

where v = (vt,V x ) denotes, for concreteness, the outward unit normal to C

and ds the element of arc length. Indeed, (2.2) implies (2.1) provided only

that C lies within a substantial class of contours, for example,

parallelograms with sides parallel to two fixed directions.

Classical conservative schemes correspond to a discrete approximation of

(2.1) with C taken as the boundary of a rectangle with sides parallel to the

axes: for example, the standard conservative schemes with a three-point domain

of dependence employ a grid with mesh points of the form (iMx,jAt), i and

j arbitrary integers, and generate the value of the difference approximation,

say u, at a typical mesh point (x,t) in terms of the three known values

immediately below

t ---



(2.3) u(x,t) = *{u(x - Ax,t - At), u(x,t - At), u(x + Ax,t - At)}

the generating function * depends on the choice of mesh lengths Ax and At

and is derived from a discrete approximation to (2.1) with C taken as the

boundary of the rectangle

{(x,t) : iAx < x < (i + l)Ax, jAt < t < (j + 1)Atl

In this section we shall describe a class of conservative schemes based on

a grid having a diamond-shaped stencil, i.e. mesh points of the form (iAx,jAt)

where i and j are integers such that i + j is even. We begin by

describing a class of three-level schemes where generating function 0 is

derived from a discrete approximation to (2.1) with C taken as the boundary of

a rhombus D with vertices at three time-levels of the form

(2.4) n = (x,t), s = (x,t-2At), w = (x-Ax,t-At), e = (x+Ax,t-At)

where (x,t) is a typical mesh point: the value un of the difference

approximation at the north vertex n is generated from known values at the

west, south and east vertices by a formula of the form

u n = (u wUslu e

where * depends on the ratio of mesh lengths Ax/At. To be precise, let

= (at ax ) and 0 = tsx) denote respectively the outward unit no-Tmals to

the ne side (northeast) and the wn side of the rhombus D with verticies

(2.3). The normals a and 0 depend only on the fixed ratio of mesh lengths

Ax/At. We introduce two smooth mappings

Rn n Rn Rn n n
H :R xR R and G :R x R R

which respectively reduce along the diagonal a = b to the normal component of

the vector (f(u),u) in the directions a and 8:

H(a,b) = a a + a f(a) + p(a,b)(a - b)
(2.5) t x

G(a,b) = 8 a + 0 f(a) + q(a,b)(a - b)
t x

-10-



Here p and q simply denote arbitrary smooth n x n matrices; appropriate

restrictions will be placed on p and q below. Next, we introduce the

following formal approximations to the four line integrals whose sum represents

the contour integral around the rhombus D:

H(Unu e ) f atu + axf(u)ds; G(u nu w )As f tu + xf(u)ds
ne wn

-H(Uwus)As - - f atu + a f(u)ds; -G(u e ,us)As - f 8tu + 8xf(u)ds
ws se

where As denotes the length of the sides of D. Summing the formulas above

yields a formal approximation of the contour integral (2.2) with C replacing

by D; the sum becomes an equation of the form

(2.6) H(u ,u e ) + G(u ,u ) - H(u u) - G(u ) = 0n e n w w'Us Ue'U '

after the common coefficient As is factored out. Finally we assume that (2.6)

can be solved for un  in terms of the remaining variables yielding a smooth

generating function *:

u = *(u 'UsU)
n w e

For local purposes, solvability is guaranteed by requiring that the matrix

H (a,a) + G (a,a)a a

be invertible. For the centered schemes described above we have

= 8 t,' =- xandat  ta x  - x an

H a(a,a) + G a(a,a) = 2ati + p(a,a) + q(a,a)

which is invertible if for example p + q is small on the diagonal.

In a similar fashion, one can construct non-centered conservative schemes

based on a discrete approximation to (2.2) with C taken as the boundary of a

parallelogram with vertices of the form

n = (x,t), s = (x + EAx,t - 2At), w - (x + Ax,t - At), e = (x - 6Ax,t - At)

More generally, one can construct a class K of multi-level conservative

I -11-



schemes based on a discrete approximation to (2.2) with C taken as the

boundary of a parallelogram intersecting several time-levels. However, we shall

restrict our attention for concreteness to the subclass of centered three-level

schemes based a stencil with vertices of the form (2.4). We note that this

subclass contains several classical schemes. The leap-frog scheme is formed

from an arithmetic average,

H(a,b) = a (a + b)/2 + a {f(a) + f(b)}/2

G(a,b) = at(a + b)/2 + 0x{f(a) + f(b)}/2

The Lax-Friedrichs scheme is obtained by eliminating the dependence on u

i.e. by taking p = q = 0. The general three-point conservative scheme (2.3)

can be regarded as a composition of two schemes in this subclass by introducing

a fractional step to produce a nine-point stencil having mesh points on five

levels of the form

(x,t),(x,t ± At),(x ± Ax,t),(x ± Ax,t + - At),(x ± Ax,t - 1 6t)

Indeed, the standard two-step Lax-Wendroff scheme is already in this form since

it can be regarded as a composition of the Lax-Friedrich and leap-frog schemes.

3. DISCRETE WAVES.

In this section we shall describe a method for introducing local wave

magnitudes into a finite difference approximation. We shall present the method

in the setting of the class Ki of three-level schemes with a centered diamond

shaped stencil; it has an obvious analogue for more general stencils. We shall

also discuss the equations which relate the incoming and outgoing magnitudes of

a local interaction and compare them with the corresponding equations for the

exact solution and the random choice method.

A pattern of local wave magnitudes can be associated with a difference

approximation defined on a grid by using the classical solution of the Riemann
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problem [20], i.e. the initial value problem with data of the form

+
u 0(x) = u if x < 0, u0 (x) = u if x > 0

+ nwhere u and u denote elements of R . We recall that the exact solution

operator resolves Riemann data (u-,u+) into a similarity solution u = u(x/t)

consisting of n + 1 constant states uj, j = 1,2,...,n + 1, with adjacent

constant states separated by either a j-shock wave or a centered j-rarefaction

+
wave [20]. Here ul = u- and un+ 1 = u 

. In the standard fashion, we take the

magnitude of a j-shock wave separating states uj and uj+1 to be the negative

of the distance from uj to uj+ along the j-shock wave curve through uj

and the magnitude of a centered j-rarefaction wave separating states u. and

uj+1 to the (positive) distance from u. to uj+, along the j-rarefaction

wave curve through u. For example, the solution u to the Riemann problem

for a system of two equations might consist of a 1-shock x = at separating

states u- and u2 together with a centered 2-rarefaction wave separating u2
and u+ , i.e. u = u in -< < x/t < a, u = " in a < x/t < X (u2), in

ad ie u u in2 2 2),i

+ ++u= u in X2(u + ) < x/t < c and the section X(2) < x/t < (u+ ) forms a

centered 2-rarefaction wave. In general we shall denote by
£j - +

= Ej(u ,u
i J

the magnitude of the j-wave in the solution of the Riemann problem with data

(u-,u+).

We shall restrict our attention to the class K1  of three-level schemes

in K based on a grid having a centered diamond-shaped stencil with vertices

of the form (2.4). Consider a corresponding difference approximation

u = u(x,t,Ax,At) with small oscillation and suppose that the Courant-

Friedrichs-Levy condition is satisfied, i.e.

tAx/At > max{IX (v)I : j = 1,2,...,n}

where the maximum is taken over a set in Rn containing the range of the

-13-



difference approximation u. We shall associate with u a pattern of wave

magnitudes by interpolating the solution of the Riemann problem between adjacent

mesh points in the following fashion: associate with each pair

(pl,p 2) = {(x,t),(x i Ax,t t At)}

of adjacent mesh points, the set of magnitudes of the n elementary waves in

the solution to the Riemann problem with data
+

u = u(p1), u = u(p2)

This association can be expressed formally by the map

Rn n Rn
I: R xR n R

(u ,u+ ) = (u ,u ) ... cn(U ,u

By a local wave interaction in u we shall mean a configuration consisting of a

mesh diamond having verticies n,s,e and w of the form (2.4) together with

the four sets of wave magnitudes which are obtained from the Riemann problems

associated with the four pairs of adjacent verticies (w,s),(s,e),(w,n) and

(n,e) and which are denoted as follows:

6= (6 n...,6 ) = I(uw'us) u = (Y ..... n I(UsUe )

a= (a' .... n) =  w u'un) a = (01.. 8 n ) = I(Un )

We shall refer to 6. and y. as the incoming j-waves and to a. and 8. as

the outgoing j-waves.

We note that one may also interpolate between adjacent mesh points even if

the C-F-L condition is not satisfied. In this case, however, it is not so

clear how to interpret the interpolation. On the other hand, if the C-F-L

condition holds, it is meaningful to interpolate between mesh points on the same

space-like arc as well as between points on the same time-level, since the exact

solution operator applied to Riemann data is invariant under a space-like

rotation of the x-t plane. Indeed, the C-F-L condition guarantees that the

line segments ws,se,wn and ne forming the boundary of a typical mesh diamond
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are space-like for difference approximatins with small oscillation. We remark

that one is free to imagine a set of n elementary waves actually crossing the

line segment joining a pair of adjacent mesh points (p1,P2 ); waves having a

location specified only within a distance 1p1-P2 1. However, we emphasize that

by definition we only associate a set of n wave magnitudes with a given pair

With this understanding, one can summarize a discrete wave

interaction, say for a system of two equations such as Figure 1 of Section 4

where the symbols Uk,Sk,Uk+ I and wk denote the values of the difference

approximation at the corresponding diamond indexed by k.

We shall begin the discussion of local interactions by considering the

relationship between the incoming and outgoing waves. It is clear that the

outgoing magnitudes a and 8 are smooth functions of the incoming magnitudes

4 and y and the local base state U

ss (,)=W(45,Y'u )

We note that 65,Y and u suniquely determine uw and ue which together

with u. uniquely determine u ,a and 8 through the smooth generating
n

function *. A Taylor expansion of W at 6 = y = 0 provides the dominant

terms in the laws governing the interaction of weak waves. To begin with we let

V. = (45.,y.) and a. = (a.,8.)

denote the incoming and outgoing j-waves and write

(3.1) a = A(u )v + O(lvt
2

where A(us ) is a smooth 2n x 2n matrix and v = ... ,V

1 nCy = (l...,aOn.

For simplicity we shall restrict our attention to a broad subclass of

schemes in K I which preserves two basic properties of the exact solution

operator. In this connection, we first recall that if all incoming waves of an

interaction in an exact solution belong to the same characteristic field, say

-15-
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the jth field, then the magnitudes of the outgoing waves of the kth field,

k # j are quadratic with respect to the magnitudes of the incoming waves. we

shall, first of all, restrict attention to those schemes in K, which preserve

this property, i.e. schemes such that

(3.2) ak = O(Iv12 ), if vk = 0 for k # j

Clearly this property is equivalent to the statement that A(us ) is a

tridiagonal matrix for all us . We note that property (3.2) is satisfied by the

Lax-Friedrichs scheme and the leap-frog scheme; a simple criterion for (3.2) is

given in a lemma below in the setting of schemes in K, and can easily be

checked for the Lax-Firedrichs and leap-frog schemes. It follows as a corollary

that the two-step Lax-Wendroff scheme satisfies the natural analogue of (3.2)

since it can be viewed as the composition of the Lax-Friedrichs scheme and the

leap-frog scheme; indeed, the same is true for all the standard variations on

the Lax-Wendroff scheme since they share the same linearization. Finally, we

remark that the random choice method can be regarded as a scheme which employs

the same stencil as schemes in K, and it satisfies (3.2); the laws for random

choice interactions are recalled in Section 7.

Secondly, we recall that wave interactions in an exact solutin do not

augment wave magnitudes by more than a quantity which is quadratic with respect

to the magnitudes of the incoming waves. We shall restrict our attention

further to those schemes in K, which preserve this property, i.e. schemes such

that
n n2(3.3) a I + 18.1 L j O( 2

j=l j=1

The condition (3.3) is equivalent to the condition that

a, (1 -uj 
+ T Y+ O(IvI 2

(3.4) = i Tjj

+ (1 - T )y + O(Ivl2)

-16-
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where the coefficients p. and T. satisfy
J )

(3.5) 0 4 ,(u ) 1 1, 0 < r.(u) T 1,
3 s J s

for all values of their argument us . Now, it is not difficult to show that,

within the subclass of schemes in K, which satisfy property (3.2), inequality

(3.3) holds for those methods which are precisely first order accurate. In this

connection we recall that any scheme which is consistent with the equations and

which has a smooth generating function is at least first order accurate. Thus,

condition (3.3) rules out second order accurate methods. In particular, the

Lax-Friedrich scheme satisfies (3.3) while the leap-frog and Lax-Wendroff

schemes do not. It is also simply to verify that the random choice method

satisfies (3.3), cf. Section 7. Finally, we remark that for certain technical

reasons we shall restrict our attention to the subclass N of schemes in K1

which satisfy (3.2), (3.3) and

(3.5) 0 < uj(r ) < 1, 0 < r u ) < I

The lemma below contains a simple criterion for membership in N which shows in

particular, that the Lax-Friedrichs scheme belongs to N.

Lemma. Consider a scheme in class K. The corresponding matrix A is

tridiagonal if and only if the matrix

w(a) = p(a,a) + q(a,a)

obtained from (2.3), satisfies

(3.6) w(a)r.(a) = w.(a)r.(a), j =J J

where rj denotes the right eigenvector of f' associated with the eigenvalue

X.. If (3.5) holds then
J

(3.7) _ a + a X.(a) + w (a)}/{o + a X.(a) + w.(a)}
t xj j t xJ J

(3.8) T. = ( A + A (a) + w (a)/{at + a X (a) + w.(a))
) t xji i t xJ jJ

where at = t + t I x = a x + x and the scheme lies in N if and only if

-17-



I.

the eigenvalues wj(a) are such that the quantities specified by (3.7) and

(3.8) lie strictly between zero and one.

Proof: Consider an iteraction associated with a mesh diamond such that us U

and uw lies on the j-wave curve through us . In this case the only incoming

wave is a j-wave crossing the ws side of the diamond. Regard us as fixed

and uw as parametrized by arc length 6 along the j-wave curve through us:

u = u (6), u (0) = u
w w w S

Substituting uw = u (6) and u = u into (2.5), solving for u = u (6) and

differentiating with respect to 6 at 6 = 0 yields

-1
(3.9) i (0) = (H + G )-(H - G )' (0)

n a a a a w

where the coefficient matrix is evaluated at (usus). A simple calculation

shows that the matrix in (3.9) is given by

{a I + a f'(a) + w(a) - I {aI + ax f'(a) + w(a)}
t x x

where a = us . By considering the analogous incoming configuration where K

uw = us  and ue lies on the j-wave curve through us we obtain a

corresponding equation

a (0) = (H + G ) (Ga - Hb )aU (0)n a aea b'

in which the coefficient matrix is given by

{o tI + 0 f'(a) + w(a)}-{t I + Bxf'(a) + w(a)}

with a = us . The lemma follows from the fact that

u (0) = C (0) = r.(u
w e j 5

Remarks: It follows from the lemma that a scheme in class N necessarily

satisfies the C-F-L condition. Conversely, if a scheme in K has a

tridiagonal matrix A then the C-F-L implies that p and T. lie between

zero and one provided wj(a) is sufficiently small. The latter fact applies to

the Lax-Friedrichs scheme for which p q = 0.
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Next we shall describe several numerical mechanisms of interaction present

in class N schemes. For this purpose, let us write the expansion (3.2) for a

class N scheme in the form

a A (u )v + B.(u )(v,v) + O(IVI 3)

n

B (U )(V'v) b3 (u )(vjvk) + I b'k(u )(v Jv
j ~ k*j j k-- I

where vj = (6jyj), a. = (cj.,8.) and bki are bilinear maps from R2 x R2

to R2  depending on the local base state us . The presence of numerical

mechanisms of wave interaction is revealed by the structure of A. and Bj.

Self-interactions. The structure of the operator B. shows that the nonlinear

interaction between characteristic fields in a difference approximation is

substantially larger than in an exact solution. By way of example, let us

consider an exact solution u to a system of two equations which consists of

two interacting weak shocks of different fields. To be precise, suppose that in

a strip of the form ( u,t0 consists of a 2-shock 62  and a 1-shock y1

which have trajectories

x - x 0 = s6 (t - t0 ) and x - x0 
= s Y(t - t 0), t < t0

and which approach with speeds s6 > s while in a strip of the form

(t0 ,m), u consists of a 1-shock a 1 and a 2-shock 82 which have

trajectories

x - x 0 = s (t - t0 ) and x - x0 = s8 (t - t0 ), t < t0

and which recede with speeds s < s u is constant in each of the four

sectors defined by the four rays above. It is well-known the outgoing

magnitudes satisfy

a, = 1 + O(Y1 62 ); 82 = 62 + O(y162 )

For systems of n equations, two interacting weak shocks 6. and yk qenerate
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two shocks a. and k satisfying
I k

ai = Y. + O(y j); 8k k + O(y j6k

together with reflected waves

£ =O(yk

in the X th field, £ * j, £ * k. Thus, in these two examples the wave

magnitudes are conserved in each characteristic field up to first order while

the amplification of individual waves and production of reflected waves is at

most on the order the product of the approaching waves. The same statement can

be made for multiple wave interactions. Perhaps the simplest formulation is

provided by the laws for multiple wave interactions in the randon choice cf.

Section 7, these laws coincide with those of the exact solution up to and

including quadratic terms. For the purposes of the present discussion we only

want to remark that for the exact solution operator and random choice operator

the diagonal terms of B. vanish identically. In constrast, the diagonal terms

of B. for schemes in class N, i.e. the matricies b (u ) do not vanish on
j kk s

any open set. The term

(3.9) b jk(us)(Vkpk
kk s k

records a contribution to the 3th field from the self-interaction of waves in

the kth field. If k * j then the term (3.9) represents a contribution to the

production of a reflected waves in the jth field due to self-interactions in the

kth field. If k = j then the term (3.9) represents a contribution to the

amplification of waves in the jth field due to self-interactions in the jth

field. For example, suppose that the incoming waves of a discrete interaction

belong to the kth field, i.e. v, = 0, 1 * k. First, we see that outgoing waves

a. are produced on the jth field j * k satisfying

()
. (J)(u )(VV ) + O(IV k j k
j kk s k k k
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Thus, although there exist no incoming waves of the j th field, j * k, there do

exist outgoing "reflected" waves of the jth field arising from self-interactions

in the kth-field. Secondly, the waves of the kth field are themselves amplified

by a term of the form (3.9), i.e.

a + = + y + b(J)(u )(vk 'vk) 2 + O(Hvk ,3

Wave Splitting. Consider a discrete interaction with only one incoming wave,

say 6.. Up to linear terms, the action of a scheme in class N is to split

6. into two waves in a proportion determined by the local base state s

a = {1 - Uj(u )}3 + 0(6 2) j (us)6 j + 0(62)
j j s j j j s

For a general interaction, each of the incoming waves is split and then

superimposed up to linear terms in a fashion determined by the structure of the

matrices A. The process of wave splitting is absent in the exact solution

operator to systems with eigenvalues of the form (1.2). We remark, in passing,

that if an eigenvalue X. is not monotone in the direction rj then shocks in

the exact solution can be split spontaneously through interactions with smooth

flow. The process of wave splitting is also absent in the random choice method

except for the trivial situation where a rarefaction wave is split by a sample

point. In the random choice method the splitting of rarefaction waves is not

accompanied by any form of wave amplification.

One of the interesting consequences of wave splitting a conservative scheme

is that the recession of waves after interaction is not sharp. In the special

exact solution u described in the subsection on self-interactions, the two

receding shock waves a I and 82  from the boundary of an identically constant

wake region. For a conservative scheme two "receding" shock waves are split

again and again at each time level, leaving a wake regions with waves on the

same order as the primary waves themselves.
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Incomplete Wave Cancellation. The well-known persistence of oscillations

observed in difference approximations generated by conservative difference

schemes corresponds to an incomplete cancellation experienced by interpolated

waves of the same characteristic field but of different sign, i.e. j-waves with

positive and negative magnitude. In the random choice method, the interaction

of a j-rarefaction wave (positive magnitude) and a j-shock wave (negative

magnitude) leads to the absorption of the smaller wave by the larger up to

linear terms. A similar statement can be made for exact solutions by

considering the effect of such an interaction after a small interval of time. In

contrast, in a conservative difference scheme the larger wave only absorbs a

fraction of the smaller in typical interactions. An analytical discussion of

this feature is postponed until Section 6.

4. GLOBAL WAVE CONFIGURATIONS.

In this section we shall describe a framework for studying local and global

interactions in a finite difference approximation generated by a member of the

class K1 of three-level schemes with a centered diamond-shaped stencil. An

analogous treatment suggests itself for schemes with more general stencils. To

begin with, let us consider an arbitrary function u which is defined on a grid

having a centered diamond-shaped stencil with mesh lengths Ax and At. Fix

two consecutive levels t = mAt and t = (m + 1)At and let (sk ) and (uk)

denote the sequences of values of u at the lower and upper levels; we put

sk = u{(2k-1)Ax,mAt} if m is even and s = u{2kAx,mAt} if m is odd,

uk = u{2kAx,(m+lAt} if m is even and u = {(2k+I)Ax,(m+l)At} if m is odd,

and we put

6= I(u ks ) and y = I(Sk ,uk+1)
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Figure 1 illustrates the case n = 2. We note that the values sk together

k k
with the interpolated magnitudes (6Yy ) uniquely determine the values uk on

the upper level. Thus, complete information for two consecutive levels is

carried by the sequence

{X k } X k k k 3nX={1, X 6,y ,sk) € R .

In certain circumstances it proves useful to regdrd each local state Xk as

being decomposed into local states of the jth field Xk
k k kx= ( 6 j,yj,s ) •

jjk

Now in the case where u arises as a finite difference approximation associated

with a scheme in K I having a generating function , the process of

advancing u from one time-level to the next can be conveniently represented by

the following map M defined on the set 2 of all such states X:

S{(k,Y k (ak-i k

k k
where the outgoing wave magnitudes a and are obtained from and the

corresponding incoming waves by the rule

k k= I(uk ,Wk); k 
= I(Wk, uk+)

where

wk = : ksku I ) ,

cf. Figure 1. Thus, the marching map M represents the process by which

k kincoming magnitudes 6 ,y and base states sk determine values uk on the

next level, which in turn produce values wk and outgoing magnitude through the

generating function 0. With the aid of such sequences, we shall identify a

given finite difference approximation u with the discrete trajectory of its

data X. under M in Q:

u - (MPX 0P=°
0 p=0

-23-
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t

t= (j-4+l) At ku k k kk1

1 a2 w 1 2

t=jAt.

S k_1  s k  S k+ 1

Figure 1

The problem is to prove that if TVX0  is sufficiently small then for each

time T > 0,

TVMPX ( const
0

if p 4 T/At, where the constant is independent of the mesh length. Here we

define

TVX 16.1 + I.Ik
j,k

As we remarked in the introduction, the strategy is to study potentials for wave

interaction. For the subclass N of schemes satisfying (3.2), (3.3) and (3.5),

we shall construct appropriate potentials in several steps. The first is to

introduce a notion of approximate simple wave as follows. Embed a diamond-

shaped stencil, centered or not, with mesh lengths Ax and At into a j-simple

wave u = u(x,t) and examine the relationship between the wave magnitudes

6 and y obtained by applying the interpolation map I to the values of

u at the west-south vertices and the south-east vertices respectively:

6 = (61''.''6 n I(uu s); Y = (Y1 .... Y) = (us'u)

-24-
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A simple calculation reveals a restriction on the ratio of the magnitudes of the

incoming J-waves:

6 = e (U )y + O(Ax2 + At2

6k =k ,k* j

where j denotes the ratio of direction cosines between the normals

a and 8 associated with the stencil and the characteristic ray with speed

(u s):

j(u ) {at + ax X (u )1/{8 t  + B ). (u 7 0

For the purpose of constructing potential functionals, local states

X= (6jyjs) satisfying

6j = 8 (s)y

play a central role. We shall refer to

r.(s) = {X. : j (s)y j
3 j i i

as the set of local j-simple waves passing through the base state s E Rn and

we shall study the action of class N schemes on the corresponding global

configurations

r(s) = [X : 6 k (S )Yl}
j k

One can regard an element of r(s) as consisting of a chain of local simple

waves (of varing index) passing through a sequence s = (sk ) of local base

n
states sk C R

For schemes in class N we shall first construct a functional P : + R

which decreases along those segments of the orbit MPX which lie in the

complement of a neighborhood of the simple waves in the sense that

(4.2) P(MX) - P(X) -cd iX) + ce SX)

if TVX << 1. Here and below we shall use the letter c to denote any of

various positive constants which depend only on the system (1.1), the scheme
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under consideration and the vector u e Rn  in the neighborhood of which all

analysis takes place. The quantity d(X) denotes the X2.-distance from

kkX = ((S ,Y ,Sk )} to the corresponding set of simple waves r(s), s = (S k),

i.e.

d 2X W (6. _ e (s )y k1 /{I + e.(s 0
j,k i k k i k

and e p(X) denotes the sum of the pth powers of the wave magnitudes in X,

i.e.

e(X) = 1 ivj(P
P j,k

One could, of course, normalize one of the constants c in (4.2) to equal one.

In addition P is quadratic in the sense that

2 2
-c(TVX) 4 P(X) 4 c(TVX) 2 .

These estimates motivate a study of a general class of neighborhoods of simple

waves of the form

r = {X : d (X) 4 me (X)}mp p

which can be regarded as consisting of approximate simple waves. However, for

the purposes of this paper the sets r are needed only in the case where m
mp

is small and p = 2 and the case where m is large and p = 3. The case p = 3

is of particular interest since e3(X) represents the approximate rate of

entropy production associated with the state X.

The details of the construction of P are postponed until Section 5; we

shall presently restrict our remarks to certain qualitative properties of P.

We begin with a simple observation that for schemes in class N the inequality

(4.1) implies an estimate on the total variation along those segments of the

orbit in r 2 " Indeed, for a scheme in class N, the interaction of weak waves

augments the total variation norm at most quadratically, i.e.
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TVMX 4 TVX + ce 2 (X)

if as osc X << 1, where the oscillation of X is defined as the supremum of

the absolute values of wave magnitudes 6 and y k in X, and we obtain the

following lemma.

Lemma. Given a scheme in class N and a constant m > 0, there exists a

constant c(m) such that the functinal F1 = TV + c(m)P satisfies

F (MX) ( F (X)

if x erc and if TVX << 1.
m2

Since the functinals F1 and TV are equivalent on states with small

total variation, i.e.

cTVX 4 F (X) cTVX

if TVX << 1, it follows as a corollary that

k
TVM X 4 cTVM X for p < k < q

if TVMPX << 1 and if MkX lie in rc for p 4 k 4 q. Granting the lemma,
m2

the problem of establishing stability in the total variation becomes one

estimating the total variation norm along those segments of the orbit which lie

near simple waves, i.e. in rc2 '

The Structure of P. The potential P is sum of n functionals Pji each

measuring the potential for interaction in waves of a given characteristic

field. The functional P. contains a constant coefficient quadratic potential

for interaction as in the random choice potential (12] plus a weighted sum

corresponding to numerical self-interactions:

2
(4.3) Pj(X) = a ai + (a,u a)ao

Dj

Here Dj = Dj(X) denotes the set of all pairs (a,$) of distinct j-waves in

X. The weight *j(a,u ) depends on the local base state u through which the

-27-
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wave a passes, on orientation of the normal of the line segment which a

crosses and on the way in which the scheme under consideration approximates a

j-simple wave.

We note that, in contrast, the random choice potential contains terms of

the form

A

where A. denotes the set of all pairs (a,8) of approaching j-waves in a

given wave configuration; in the terminology of [12] a pair of j-waves is called

approaching if at least member is a shock. The presence of terms of the form

(4.4) is motivated by the fact that, in the random choice method, approaching

j-waves a and 8 will collide in a finite time in the absence of interference

from other waves, just as in an exact solution: if a and 8 are both shocks

then the total variation typically increases at the point of interaction by a

quantity on the order Iai; on the other hand if only one wave is a shock, the

total variation is reduced by

-C(z,8) + O(Wa8)

where the cancellation between a and 8 is defined by

C(a,8) = 2 min(laj,11) if sgn a * sgn 8

= 0, otherwise

cf [12, 13]. In constrast, pairs of j-rarefaction waves in conservative

difference approximations can also interact through numerical errors and one may

expect their products to appear in potentials for wave interaction. Lastly, we

remark that for class N schemes, one has the option of working with potential

functionals P in which the leading term of (4.3) is replaced by

I Is
28
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but in this case additional terms involving cancellation effects C(a,B) appear

on the rigit hand side of (4.2). Such potentials are useful in the context of

hybridized scheme; for current purpose it suffices to discuss potentials of the

form (4.3)

We shall now turn to the problem of estimating the total variation norm

along those segments of the orbit which lie near simple waves. To this end one

is led to study the local recession of waves after interaction; the motivation

is the following. We recall that in the exact solution operator three main

mechanisms of stability are present in the form of the cancellation process

between shocks and rarefaction waves of the same field, in the spreading of

individual rarefaction waves and in the recession of waves of different fields

after interaction. Now, if a local state X j (6j,Y 1 ,s) lies close to a

J-simple wave, for example, in the sense that

d (Xj) ( mep(X

with p - 2 and m small or with p > 2 and osc Xj small then clearly

sgn a j sgn yj and cancellation is absent. Secondly, one expects that the

spreading of rarefaction waves will only be detected in the framework of a

n-parameter interpolation after several time steps. Therefore, in studying the

behavior of a class N scheme in two consecutive time steps acting on

configurations near simple waves, it is natural to investigate the wave

recession process. For this purpose we shall construct a functional T which

measures the potential for transverse wave interactions and satisfies

(4.5) T(MX) - T(X) 4 -cT(X) + cd(X) + ce3(X)

if TVX << 1. Here T records the sum of products of all incoming transverse

waves in X:

T(X) (tI k kI - < X and < k <
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In particular, if X lies in r (for appropriate m) then T is reduced in

one time step by a quantity on the order of T modulo the approximate rate of

entropy production, i.e.

T(MX) - T(X) 4 -cT(X) + ce 3X)

if TVX << I and X c rm3. Thus if X e rm3 the functional T experiences

virtually the same reduction, modulo e3, as the exact solution operator. In

this regard we note that T includes products of both approaching and receding

waves where, in the standard terminology, a pair (Sj,7£) is called approaching

if 6. lies to the left of y and either j > X or j = X and at least one
J

member is a shock and receding if 6. lies to the left of Y and j < £. Now

if a local state is "close" to the simple waves then T is in fact on the order

of the sum of just the products of those incoming waves which are approaching.

The latter quantity is precisely the amount by which the potential for the

random choice method is reduced in a local interaction cf. (121. We conclude

that for schemes in class N, a potential of the form Q = cP + cT satisfies

(4.6) Q(MX) - Q(X) 4 -cT(X) - cd (X) + ce 3X)

if TVX << 1.

The form of the right hand side of (4.6) leads one to study the action of

class N schemes on the following sets of states Wmp contained in rmp

W {X : T(X) + d 2(X) 4 me (X)mp p

If p > 2 or if p = 2 and m is small, one can regard a point X in Wp

as a weakly interacting state in the sense that the total amount of transverse

wave interaction in X plus its distance squared to the corresponding simple

waves is relatively small. In the case p = 2 we obtain a bound on the total

variation along those segments of the orbit MkX which lie in W .
mp
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Lemma. Given a scheme in class N and a constant m > 0 there exist

constants cI and c2  depending on m such that the functional

F = TV + c 1P + c2T satisfies

(4.7) F(MX) 4 F(X)

if TVX < I and if X C Wi2
m2

Again, it follows as an immediate corollary that

(4.8) TVMk X 4 cTVMPX for p < k 4 q

if TVMPX << 1 and if M kx lies in W for p 4 k 4 q.

In Section 6 we shall describe a procedure for perturbing the generating

function of class N schemes in such a way as to damp the numerical reflected

waves which are produced by the interactions of configurations near simple

waves. For the perturbed schemes estimates of the form (4.7) and (4.8) hold

provided the X and MkX respectively lie in the complement of the much

smaller third order states Wm3. As we remarked above the sets W 3  are of

particular interest since e3(X) represents the approximate rate of entropy

production.

Structure of T. The functional T consists of two terms. The first represents

the standard quadratic potential for approaching waves of different

characteristic fields and the second represents a numerical potential for self-

interactions within groups of waves associated with pairs of adjacent mesh

points:

T(X) Iasi1 + I v's'z,8u ,u )Iasi
A

Here A = A(X) denotes the set of all pairs (a,$) of approaching waves of

different fields and the weight P has the following property: if a is a

j-wave and 8 a k-wave, k * J, crossing the west-south side or the south-east

side of a mesh diamond with base state us respectively then
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p = p (u s) or jk(u s

for certain smooth functions and qjk' which characterize the numerical

self-interactions among the waves of the associated Riemann problems, otherwise

4 = 0. The details of the construction of T are given in the next section.

5. POTENTIAL FUNCTIONALS.

In this section we shall construct the functionals P. and T discussed

in Section 4. The construction of P. is based on the following fact.

Consider the linear mapping of R2  defined by

(5.1) a = Av; A = TI- U r

where v = (6,y) and a = (a,). Such mappings arise from the leading term of

(3.1) with a fixed value of the local base state us . A simple computation

shows that quadratic form

Q(a) = ay + b6
2 + y

satisfies
1 )2

(5.2) Q(SAv) - Q(AV) = -(I + T)(1 - p)(b - (6 - ey)

if the constants a and b satisfy

(5.3) a - 1/2 = 0(b - 1/2); 0 R (1 - T)/(1 -

Here,

s~f 0°10
Indeed, if the left hand side of (5.2) maintains one sign for all V then (5.2)

and (5.3) necessarily hold. In the context of schemes in class N this

observation yields the following result. Fix the local base sate us and put

A = A.(u), u = u (u) and T = T (u)
3 s i s j s

It follows from (3.7) and (3.8) that
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( - T. )/(1 - i ' ). e ) (u (a + a A (u a/{t + a A. (Us)"
I I )s t x js t xj 3s

Thus, if we set

4)(c,u b.(u s )j a j s

if a is a j-wave crossing the ws side of a mesh diamond with base state

us  and

4j(a,u ) a,(u
J a 3 s

if a is a j-wave crossing the se side of a mesh diamond with base state
n

then the functional P = I P1  with P. defined by (4.3) satisfies the
j=1 J i

inquality (4.2) if a and b. satisfy

(5.4) (a. - 1/2) = 6,(b. - 1/2); b. > 1/2
I I J J

and if TVX << 1. We note that changes in the arguments of the weights 4
j

leads only to cubic contributions which can be absorbed into e3 (X). We note

that the restriction (5.4) depends only on the eigenvalues X. and the choice

of normals a and 0 and leads to a one-parameter family of potentials P.

This is in accordance with the fact that any finite difference scheme with

smooth generating function consistent with the equations is at least first order

accurate on smooth solutions: if a mesh diamond is embedded in an exact simple

wave and if the values of the exact solution at the west, south and east

vertices are substituted into the generating function 4, then the value

produced by 0 differs from the value of the exact solution at the north vertex

2by a quantity on the order of Ax

The potential T(X) for transverse interactions is constructed as

follows. we begin by considering a slightly more general potential of the form

(5.3) T(X) = s 1 1iBI + w I Ia[ I + I p(a,O)ciI + I r(a, )IaIa•
A R

Here A(X) and R(X) denote respectively the sets of all approaching and

receding pairs of waves in X such that each member wave is associated with a
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different pair of adjacent mesh points; p(a,8) = Pjk(us) if a is a j-wave

and 8 a k-wave crossing the ws side of a mesh diamond with base state uso

p = 0 otherwise; r(a,a) = r jk(u s ) if a is a j-wave and 8 a k-wave

crossing the se side of a mesh diamond with base state Us, r = 0 otherwise.

We shall show that T(X) satisfies (4.5) for an appropriate choice of

coefficients, in particular, for choices such that s is constant, w vanishes

and PJk and rjk are smooth positive functions of us . To this end we write

the linear map (5.1) in the form

a = y + a(S - 8Y)

8 = 6 - a(6 - 6y), a = 1 - ii

in order to display the deviation for the corresponding simple wave, 6 = 6y.

Consider a discrete wave interaction associated with a mesh diamond having a

local base state us . Fixing the value us, the incoming and outgoing waves

v = (6,Y) and a = (a,O) are related as follows modulo a term on the order

2

e.= yj + Sj., j . a. (6 . - Ojyj.),

(5.4) j J J

where aj = aj(u s ) and 6 = j(u ). In order to establish (4.5) it is

sufficient to show that the following incoming and outgoing potentials

associated with a single discrete wave interaction,

(5.5) T (V) = s Y j6 k + w 6 6 Yk + p 6jk 6k + [ r jkiYk

(5.6) T (a) - S a 8j + w j a k + p jk'jk + r jk Qj k ,

with summations taken over indices j < k, satisfy
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T 0() - T (v) ( -const T(v) + const j ljk
J<k

(5.7)
T(v) dIf 1 jIVk I, I 1 16 1 +I + I

j<k k X 1

provided that (5.4) holds and the coefficients are properly selected. We note

that the quadratic correction terms to (5.4) as well the changes in the local

base state introduce only admissible cubic terms into formulas (5.7). Lastly,

we remark that without loss of generality one can restrict attention to the case

where 6. and y are non-negative for j = 1,2,...,n since the general case

follows by replacing 6 and y with 16 and ly respectively.

Next, we shall describe the calculations which lead to the restrictions

on suwlpjk and rjk which guarantee (5.5). In the following all summations

are taken over indices j < k. Substituion of (5.4) into (5.6) yields

T0 (a) - Tirv) = (s - w) 6jyk - Yj'k (rjk + PJk - s - w)*j*k

+ I (soj - Pjk 6j - wY + rjkYj)lk + 2 (w6k - Pjk 6k - sk + rjkYk) j

A brief calculation show that

(1 + 89 (1 + 0 k)(6 yk - y 6) = (6 - k )(6 + y )(6k + yk

+ (i + 0k)(y k + 6 ) /a - (1 + j )(Yj + 6 )Ip /ak

and therefore

T (a) - T (v) (s-w) I (0 - k )(6j + Y )(6k + Y k)/(1+6 )(1+6 k )

(5.8) + C [{w - Pjk + (s-w)/a (1+6 )1Ok + (rjk - s + (s-w)/aj (1+0 JOY lk.

+ I{s - Pjk +  (s-w)/%(I+ek))6j + {rjk - w - (s-w)/ak (1+0 k)}y ] k  "

The condition that the coefficients of 1j and 'k in the second and third

summations of (5.8) vanish when 6 = y and 6= k k respectively leads

to the following pair of linear equations for rjk and Pjk in terms of

(specified) values of a and w
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rjk - ekPjk = s - k w + 0k)Tjk

(5.9) rj kj - 6j Pjk = w - 8 .s + (1 + O.)T3 j jk

where Tk = (s - w)/a.(1 + 9.). The system (5.9) has a unique solution since

6 *k if j * k. In particular we note that if we take w = 0 and s toj k

be a positive number then the solutions rjk and Pjk are positive and we

obtain an identity of the form

T 0(a) - T.( V) = s k ( - k )(6 j + y)(6k + Y k)/(1 + j )(I + 8k

+ I [sf1/a (1 + ) - 1/a k(1 + 8 k) + I1 - 2pjk] j k

in which the first summation involves a negative coefficient and the second is

on the order of the square of the distance to the corresponding simple waves.

It follows that the functional T(X) of the form (5.3) satisfies the desired

estimate (4.5) if we take w = 0, s positive and rjk and Pjk as the

solutions of (5.9). Here the functions rjk and Pjk will depend smoothly on

the local base state us  since the equations (5.9) depend smoothly on us . We

note that an analogous functions with w * 0 can be constructed but, as we

shall see, such a functional is less convenient for the purposes of

hybridization with the random choice method. Indeed, the act of attributing a

potential for interacting of the form wjci1 to a pair of receding waves

a and 8 in the random choice method leads to several unnecessary terms which

are awkward to handle. These terms are simply avoided by setting w = 0.

6. REFLECTION AND CANCELLATION OF WAVES.

We observed in Section 4 that a functional of the form TV + cIP + c2 T is

decreasing along these segments of the orbit Mkx with small total variation

which lie in the complement of the weakly interacting states Wm2. In this
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section we shall construct, for a given generator in class N, a quadratic

perturbation

2 2
q = q(w,s,e) = O{w - sI + Is - el ,

with the property that the reflected waves produced by the generator + q on

local states near simple waves are third order with respect to the incoming

magnitudes and the property that the marching map M associated with + q

satisfies

TVMX - TVX 4 const.[T(X) + d2 (X) + e 3(X)}

if osc X is small, i.e. in one time-step the total variation norm can not

increase by more than a quantity on the order of the corresponding reduction in

the potential Q = c1P + c2T, modulo a quantity on the order e3(X) of the

approximate rate of entropy production. It follows that for appropriate m the

functional F =TV + Q is decreasing along those segments of the orbit with

small total variation which lie in the complement of Wm3  and that

F(MX) - F(X) 4 const.e 3(X)

for arbitrary configurations X with small total variation.

In this section we shall also describe the effective cancellation between

shocks and rarefaction waves of the same field which exists for class N

schemes and their perturbations and compare it with the corresponding

cancellation occurring in the exact solution. To this end we shall begin by

recalling that for schemes in N the outgoing and incoming magnitudes of a

local interaction and related by formulas of the form

a = (1 - uj)5 j + Tjy. + p.(v); pj(v) = O(IVI2 )

*(6.1) 2(6= .j J + ( - Tj)yj + q.(v); qj(V) = o(Iv2 ),

where v = (v '...'v) and the functions u,Tjpj and q. depend smoothly on

the base state of the associated mesh diamond. The process connecting the
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incoming and outgoing magnitudes v = (6jDy.) and a (a,8) can be viewed

as a composition of binary interactions by writting (6.1) in the form

n
a =a (v) = a i(V k) + OfT(V)}

k=1

(6.2)
n

8j = 8j(V) = 8j(V k ) + O{T(V)}
k=1 j k

Here V k n  represents the vector whose kt h component equals vk and whose

jth component j * k vanishes; the local base state is regarded as fixed and

T(V) measures the total transverse wave interaction:

T(v) IV 11v.H I

j<k k

Indeed, it is easy to show that a formula of the form (6.2) holds for an

arbitrary function a = c(v) vanishing at the origin and having a bounded

second derivative.

We shall construct the perturbation q in such a way that incoming

k-waves, produce outgoing j-waves, j * k, from the generator 0 + q which are

on order of the distance squared to the corresponding k-simple waves modulo a

cubic error and in such a way that conservation of wave magnitudes holds in the

jth field modulo a cubic error, i.e.

Ia i(k )I + 18 (k )1 ( const.16  - kUs.kI + const.CV k)i

a9(vj) + 8j(v ) = 6 + y + O 3rvj
ai V + Vi j J J(V

It follows that (6.2) can be written in the convenient form
A

= (1 - jl)dj + tjyj + p.(v.) + O{g(X)}

1j + TjY + q C; ) + O{g(X)}

8 ~6 + (1 - r)y + qj i V)+ 1(

where
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p j(V) + q (V) = O(lV I )

g(X) = t(X) + d2(X) + IlIv3

and X (S,y,u s ) R3 n  specifies the incoming configuration. One can then

employ (6.3) to display the effective cancellation experienced by interacting

j-shocks and j-rarefaction waves by noting that

lajI + 108 1 ( 16j + [yjl - Cj(V) + O{g(X)}

where

C.(v) = C(6j,yj) - C(aj,8.)

2min(Ixi,ly) if sgn x * sgn y
C(x,y) = lxi + Iyl - Ix + yf =

0 otherwise

Furthermore, it is not difficult to show that the effective cancellation C.(v)

in the jth field is bounded below by a fraction of the cancellation C(6j,yj)

which occurs in the interaction of waves 6. and y. in the random choice
) J

method, modulo a quadratic term:

C.(v) > k.C( j,yj) -O{g(X))

k. = 2 min(iij,1 - jITj, -r

Thus, we obtain the following estimates on the outgoing waves of local and

global interactions:

iajl + Is. I 16jI + lyjl - kjC(6j,y.) + const.g{(6,y,u s)

TVMX - TVX ( -const.C(X) + const.d 2(X) + T(X) + e 3(X)

where the cancellation in a global configuration X = {(6 ,y s k ) is defined

by

c(x) k c(6 j fy .

j,k -
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In contrast, the interaction of a j-shock and j-rarefaction wave in the random

choice method leads to the absorption of the smaller wave by the larger and a

concurrent decrease in the total variation norm equal to twice the magnitude of

the smaller wave modulo quadratic terms: the outgoing j-wave E. is related to

the incoming j-waves 6. and y. by a formula of the form
j J

l I = [6 I + l - C(6jYj) + O(fV )2

cf. (13]. For conservative difference schemes the presence of fractional

cancellation leads to the persistance of small oscillations, corresponding to

alternating sequences of shocks and rarefactions, over several time steps.

We shall next construct an appropriate perturbating q for a given

generator 0 in class N. Consider a discrete interaction associated with a

mesh diamond and regard the base state us as fixed. Suppose that the incoming

waves consist of just a pair of j-rarefaction waves, i.e. suppose

6. ) 0, y. ) 0 and vk = 0, k * j. Here the values at the west and south

vertices uw and us  lie on the J-wave curve r.(s) through us, thej

integral curve in Rn of the right eigenvector r (u), and satisfy

.(uw  ( lus  j(u)•
j s je

If the generator 0 were to produce a point on r then reflected waves are

absent:

a') + 6j j+ ; ak'Ok = 0, k * j

However, in general, the point nj = n.(6j,yj,s) produced by 0 for

configurations with vk = 0, k * I lies within a distance on the order of
2

V1 2 from the nearest point of r (s) which we shall denote by

m = m (6 ,yjs)

We shall first construct a perturbation qj which reduces to mj - nj if vj

forms a discrete j-rarefaction wave and vanishes if
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1% - e y(U jY I > const.(16I + lyj1)

Fix m > 0, let z(x) be a smooth even function equal to one of x < m and

equal to zero if x > 2m and put

qi(v) = q(j) Z{(6j - j(U )Y j)/(6j + Y )}{m - n."

The desired perturbation q is obtained by taking m small and defining

n 2 2
(6.4) q =3 I dj(V)qj(V); d. = 1j z{(6 2 + Y )/(62 + Y2)

j=1 j i k*j kc k

We note that while the formula (6.4) for q is motivated by the case where the

incoming configuration consists of just a pair of incoming j-rarefaction waves

it has the desired effect for general configurations. In particular we note

that the support of q is contained within the set of all states

3n(6,y,u ) E R with the property that there exists an index, say j, such

that

IV ( 4mj1, k * j
k

l. - (u )y 1 4 2m(16 I + lyj1); sgn 6 = sgn yo

Furthermore a straight forward calculation shows that q vanishes together with

its first derivative in V at V = 0 and has a bounded second derivative:

2
roughly speaking q makes a change on the order of e over a distance on the

order of c.

7. THE RANDOM CHOICE SCHEME.

We shall briefly describe the generating function of the random choice

method together and the potential functionals which are used to obtain a uniform

estimate on the total variation norm of the corresponding difference

approximations. We shall compare these functionals with the functionals
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constructed in Section 5 for schemes in class N and describe certain

modifications of the random choice generating function which facilitate a

hybridization with schemes in class N.

The random choice method can be based on a centered diamond-shaped stencil

as follows. Let R(x/t;u-,u+) denote the classical solution of the Riemann

problem with data (u-,u+ ) (20], and let be a sequence equidistributed

in the interval (-1,1). Consider a grid whose stencil has vertices of the form

n = (x,(m + 1)At) w = {x - Ax,mAt}

s = {x,(m - 1)At) e = {x + AxmAt}

where x is an integral multiple of Ax. The value of the random choice

approximation at the north vertex depends only on the values at the west and

east vertices and the corresponding element y ; it is obtained by solving the

Riemann problem with data (uwsue) and sampling the value of the solution at

time t = At and position x = ymAX, i.e.

u = un (u wu eY) = R(YmAx/At;uwue)

the C-F-L condition is enforced in the standard fashion. For convenience one

can associate with each grid function produced by the random choice method a

piecewise constant function which assumes, on each small parallelogram centered

at a mesh point, the corresponding value of the grid function. We note that the

random choice method in its original formulation (121 involves approximate

solutions which are exact in strips of the form mAt < t < (m + 1)At. However,

it is not difficult to show that if a sequence of such approximate solutions is

stable in the total variation norm and convergent pointwise a.e. then the

corresponding piecewise constant functions described above converge pointwise

a.e. to the same limit.

In order to discuss the functionals introduced by Glimm for the random

choice method, we shall briefly recall the laws governing the local wave

-42-



interactions therein. We first note that the outgoing wave magnitudes of a

local interaction associated with a single mesh diamond have the following

structure. Let Ej = C (Uwu e) denote the magnitudes of the waves in the

Riemann problem with data (uwUe). There exists an index m such that

aj, C j8 0; J ,....m-1

(7.2)
a = 0, 83 J m + 1,...,n

Furthermore, if £ < 0 then either a =c and 8 =0 or a = 0 and
m m m m m

m - accordingly as the sample point YmAx/At lies to the right or left of

the m-shock of the Riemann problem. If c ) 0 then either the aforementioned

relation holds or the sample point splits the m-rarefaction wave of the Riemann

problem and produces waves am ) 0,8 ) 0 which satisfy am + 8M - Cm. In

contrast to conservative difference schemes, local interactions in the random

choice method can only increase the number of waves (by one) if a rarefaction

wave is split and such splitting is not accompanies by wave amplification in the

sense that

(e I + I61 ) - C(6j,yj) + O{D(6,y))
(7.3) 1.

D(S,y) = { I6j 6 and y approach)
k kj

in particular, two rarefaction waves of the same field do not approach, cf.

Section 5. It then follows from (7.3), together with the local recession of

waves after interaction as expressed by (7.2), that the functional

Q(X) = I lai % a,8 approaching in X)

compensates for wave amplification, i.e.

Q(MX) - Q(X) 4 -const. [ D(6 k 6k)

def
F(MX) - F(X) 4 0; F = TV + const. Q
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if X ,kk k} has small total variation [12]. We note that F(x) is

independent of the base states of X, their influence is absorbed into the last

term on the right hand side of (7.3).

The local recession of waves also plays a central role in our hybridized

methods. In this connection we shall next remark on several ways in which the

structure of the equidistributed sequence (yk) influences the geometry of

interacting waves and we shall present two modifications of the random choice

generator which guarantees that the local recession of waves occurs in a minimal

number of time steps. For simplicity let us restrict our attention to systems

of two equations. Consider a corresponding exact solution which consists of two

interacting shocks of different fields, cf. the solution u, discussed in the

subsection on self-interactions in Section 3. For a solution of the form u,

the random choice approximations consist of exactly two shocks in each strip

mAt < t < (m + 1)At; for a typical equidistributed sequence the shocks

approach during a time interval of the form (O,pAt), interact at t = pAt,

remain adjacent in (pAt,qAt) and separate in (qAt,-). The shocks remain

adjacent in (pAt,qAt) if the sample point lies strictly to the right or left

of the waves in the associated Riemann problem; of course, since the sequence is

equidistributed this can not happen for an arbitrarily long string of its

elements, hence the waves eventually separate.

Certain technical problems associated with delayed wave recession in

hybridized schemes can be avoided by using an equidistributed sequence such that

at least one element in every string of m consecutive elements corresponds to

a point in the wake region between characteristic fields. In order to describe

the construction of such sequences let us restrict our attention, for

concreteness, to systems with symmetric eigenvalues, i.e. X 1(u) = -X 2(u); the

general case is handled analogously. We note that systems of the form (1.4)
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have symmetric eigenvalues. Let us suppose that all analysis takes place in the

neighborhood N(u) of a fixed vector u e Rn  and write the interval

I = (-1,1) in the form

1 2 U 13

where I, = (-1,-1/2], 12 = (-1/2,1/2) and 13 1 [/2,1). Consider an

equidistributed sequence (yk) in I which satisfies

(7.4) y2k E 12 for all k; y2k+1 C II for k even; y 2k+1 I 1 3 for k odd.

Such sequences can be constructed, for example, by starting with a sequence

zk equidistributed in (0,1), scaling and translating in the obvious way to.

obtain three sequences (ak), (bk) and (ck) equidistributed in I, 12,

and 13 and then arranging their elements in the alternating manner indicated

by (7.4), i.e.

Y4k bk ;y4k*1 CY 4k+ 2 = bk+1 Y4k+3 = "

Now, if the C-F-L number is chosen so that

{XI(Y)At/Ax : U E N(u)} C 11 and {X 2(u)At/Ax : uC N(u)} 13

then every second member of the sequence (y.) corresponds to a sample point

Yk t/Ax which lies in the wake region in the sense that

max X < YkAt/Ax < min X2

N(u) N(u)

In working in the context of general systems or In the absence of any

restrictions on the C-F-L number (except that it be less than one) one #ill

obtain an equidistributed sequence such that every mth element m > 2 lies in

the wake region.

We note that the process above which construct Yk from zk  does not

alter the error of approximation of zk in the following sense. If the average

number of elements of Zk with index 4 n in a given subinterval J
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approximates half the length of J within an error on the order of *(n), i.e.

IS{n,j;(zk )}/n - IJI/21 4 c(J)*(n)

where, without loss of generality *(n) vanishes monotonically, then the same

rate of approximate obtains for (yk), i.e.

IS{n,J;(yk )1/n - tJI/21 4 d(J)(n)

for an appropriate constant d(J) depending only interval J. For a typical

equidistributed sequence one has *(n) = n -1/2, while quadratic irrationalities

lead to sequences for which O(n) = log n/n. For technical reasons, concerning

hybridized schemes, it will be necessary for us to employ equidistributed

sequences with a rate *(n) satisfying

3/4
(7.5) lim *(n)n = 0

n 00

in order to show that limit of the associated difference approximations is an

exact solution. As we shall see in Section 11 the restrictin (7.5) is not

necessary for the stability of the hybridized schemes.

Next, we shall describe a second modification of the random choice

generator which has the desirable effect of emphasizing the local recession of

waves after interaction. For this purpose, let us consider a random choice

interaction for a system of two equations and suppose that the sample point

y Ax/At,At) does not lie between the waves C, in the solution of the RiemannkJ

problem with data (uw ,Ue ) obtained from the west and east vertices of the

associated mesh diamond. In this situation one of four configurations obtains

for the outgoing waves (a,O): both cross the wn side; both cross the ne

side; C 1 is a rarefaction wave split by Yk' i.e.,

O1 > 0, 08 1 > 0, cI + 8 = El

C2 is a rarefaction wave split by yk' i.e.,
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a2 > 0, 82 > 0, 8 0, a2 + 82 = 2

If any of the above four configurations occur and if

(7.6) le1C21 > cc2 ,  le11 + I21 4 LO

with C and L given positive constants, we replace the original element Yk

by zero. Thus, in the case of outgoing waves whose magnitudes are, so to speak,

of order a we enforce the immediate recession of waves if it does not occur in

the original choice of equidistributed sequence.

The effect of such a modification on the error associated with the random

choice difference approximations can be analyzed as follows. Let Q(i,j)

denote the mesh diamond centered at (iAx,jAt). The random choice

approximations u = u(x,t;Ax,At) satisfy the exact equations (1.1) within an

error of the form

(7.7) 1 E(i,j) ff t u + xf(U)dxdt
(ij)

where

Ax
E(i,j) = f *(x,(j + 1)At){u - R(x/At;u ,u )}dxn w e

(7.8) -Ax

un R(y Ax/At;uwu
n J+1 we

It has been shown by Liu (26] that for each equidistributed sequence the sum of

all the errors E(i,j) associated with mesh diamonds Q(i,j) vanishes for each

given test function * as the mesh length approaches zero. The additional

deviation produced by the above relocation of certain elements yk is on the

order Ax(Ic I + le 1) and satisfies1 2

AX(Il1 + Ic 21) AxLIE1C I/Ca

It follows that the sum of all such terms vanishes as Ax approaches zero

provided that a(Ax) satisfies

(7.9) lim Ax/O(Ax) = 0
Ax+O

Here we have appealed to the fact that the total amount of wave interaction as
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measured by D in a given random choice approximation is bounded uniformly with

respect to the mesh length (12, 131, which in this context implies

1C 1 C2 1 const.

where the summation is taken over all diamonds associated with a relocated

element Yk"

In treating systems of two equations with eigenvalues of the form

2= -X 2 we shall, in the remaining sections, refer to the random choice

generator which employs an equidistributed sequence satisfying (7.4) and subject

to the above alteration based on (7.6) as the modified random choice generator.

8. HYBRIDIZED SCHEMES.

In this section we shall describe a class of hybridized methods based on

the tracking of waves whose magnitude lies between specified thresholds

depending on the mesh length. Let us begin by considering two generating

functions based on the same grid having a centered diamond-shaped stencil,

(8.1) Un = l(u w'Usu e)

(8.2) u = r(u u)
n we

where t corresponds to a (possibly perturbed) scheme in class N and r to

the random choice method; the dependence of r on the equidistributed sequence

is suppressed. Suppose one is given a mesh function v which satisfies either

(8.1) or (8.2) at each mesh diamond, i.e. the value at the north vertex of each

mesh diamond is obtained from the three lower vertices by either (8.1) or (8.2)

according to some presently unspecified rule of selection. Let C and RC

denote the sets of diamonds at which (8.1) and (8.2) are employed and consider

the associated pattern of wave magnitudes in v as introduced in Section 3.

For a given mesh diamond S1 let Q- and Q+ denote respectively the diamonds

I.whose ne side coincides with the ws side of Q and whose wn side
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coincides with the se side of Q; thus an incoming wave of 0 crossing its

ws side serves as an outgoing wave of S1 while an incoming wave crossing

its se side serves as an outgoing wave of Q+. Suppose one is given constants

m > k > I and a positive function a = o(Ax) which vanishes in the limit as

Ax approaches zero. In terms of these parameters we define a major j-wave

in v to be an order tuple

1 2
k J

whose elements c. denote the magnitude of an incoming j-wave of some diamond]

in RC, say Q and satisfy the following conditions.

(8.3) If e is the outgoing wave of a diamond in C then le.1 > mo. If3 3

1 1
C. is the outgoing wave of a diamond in RC then IleI > ko and I3 1

contains no incoming j-wave 6j such that
3 1

sgn '=sgn . and 1 >j ko.

k k+1
(8.4) If p > 1 then ck and c serves as the incoming and outgoing

j-waves of ak  and satisfy
k k+1k

sgn .= sgn e 3 and 1CI ) I3

We shall say that a mesh diamond Q contains an incoming major j-wave if any of

the following five conditions hold.

1) 16j ma and Q- e D 2) IyjI ) mo and Q+CD

3) 16j1 > ka and Q- c RC 4) lyjI ) ka and + £ RC

5) Either 6 or yj lies on a major j-wave.

We note that if any of the first four conditions hold then it is possible for

to serve as the initial diamond of a major j-wave.

In this paper we shall establish the stability and convergence of certain

hybridized schemes whose switching operators are based on the tracking of major

waves. The starting values on the first two time-levels t = 0 and t = At

for such schemes can be obtained by either setting
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u(jAx,O) = u 0 (jAx); u(kAx,At) =u,(kAx)

for appropriate indices j and k or by using standard procedures to produce

more accurate values at the second level t = At from the initial data

u 0(W. Given a selection of parameters m > k > 1 and a = CAx) > 0 together

with starting values on the first two levels, the difference approximation is

marched forward by using (8.1) if Ql contains an incoming major j-wave for some

index j = 1,2,... ,n while (8.2) is used otherwise. For a class of systems of

two equations and initial data with small total variation we shall establish in

Section 11 convergence of certain hybridized schemes of the above type which

employ perturbations of class N4 generators for the function in (8.1).

It would also be interesting to study hybridized methods based on a single-

level threshold where the random choice generator is used to compute the value

at the north vertex of a mesh diamond if there exists an incoming wave ~.or

y i such that 161~ a or Iyt > a, while a conservative generator 4is

used otherwise. Such schemes correspond to more standard generating functions

of the form

+ (1- )r

for an appropriate switching function e. The reason for introducing a multi-

level threshold in this paper is to ensure the convergence of the corresponding

difference approximations to an exact solution. Each difference approximation

produced by hybridizations of the above type satisfies the exact equations (1.1)

within an error which consists of three parts: the first is associated with

diamonds in C and vanishes by the usual arguments employed for standard

schemes [22], the second Is associated with the equidistributed sequence on

diamonds in RC and vanishes by the argument of Liu [26], and the third

involves the total magnitude of waves crossing the boundary between C and

RC. In Section 11, we shall show that the third contribution vanishes as Ax



I. -I . .. ... - . . . . .. .

approaches zero. To do this, it seems necessary to rule out rapid switching

between the two generators (8.1) and (8.2) during the propagation of an

individual wave. In hybridizations of the above type, the random choice

generator remains locked on a major wave until a measurable amount of

interaction on the order of a(Ax) has reduced its magnitude below a. The

expectation that such methods will produce only a finite amount of "wave

interaction" similar to that of the exact solution operator leads one to suspect

that the boundary contribution will vanish in the limit. The estimates which

make these remarks precise are presented in Section 11. In this connection we

also recall from Section 7 that we must require a(Az) to vanish slower than

Ax in order that our modification of the equidistributed sequence on selected

random choice diamonds induces a deviation from the standard random choice error

which vanishes in the limit. This restriction also prevents a premature switch

from (8.1) to (8.2) in the computation of a focusing compression wave: if a

has the same order as Ax then the random choice generator is engage at a time

on the order of At prior to the time of focus.

Finally, we remark that it would be interesting to study the corresponding

hybridized methods which are based on incoming major j-waves which are of shock

type. For technical reasons we have enlarged the class of incoming major j-wave

to include both shocks and rarefaction waves. We conjecture however that as the

mesh is refined the random choice method is in fact only engaged for a

substantial length of time on the major shock waves.

9. HYBRIDIZED FUNCTIONALS.

In this section we shall construct potential functinals which will he used

to estimate the total norm for the hybridized schemes of Section 7. To this end

we first eliminate from PM(X) the terms associated with pairs of j-rarefaction
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waves, since they are not compatible with the random choice potential which

involves only pairs of approaching waves. We redefine the weights j(a,u ) of

(5.3) by setting

(9.1) *j(a,u ) = b.(u a ) or *.(a,u ) = b.(u a 1/2

if a is a j-shock wave or a j-rarefaction wave respectively, crossing the

ws side of a mesh diamond with base state u and by setting

(9.2) *.(a,u ) = a.(ua ) or *.(a,u a ) = a.(u a ) - 1/2

if a is a j-shock wave or a j-rarefaction wave respectively, crossing the

se side of a mesh diamond with base state u . We then put
a

(9.3) P(X) = J 1a0l + [ j(a,u )a2

A. a
J

where A. = A.(X) denotes the set of all pairs of approaching j-waves in X.

As before the functions a. and b. are chosen to satisfy (5.4) and we define

n
P(X) = q P.(x)

j=1 I

The behavior of such functionals on local wave interactions can be

efficiently described in terms of the connected polygonal arcs which consist of

line segments joining adjacent mesh points. Following the standard convention

(121, we shall refer to such an arc as an I-curve if the x-component varies

monotonically and write j 2 
) J1 if J2 lies toward larger time. Two I-curves

J 2 J1 are called consecutive if they coincide except along the boundary of a

mesh diamond 9 : J2 - J1 consists of the wn and ne sides of Q while

J1 - 2 consists of the ws and se sides of 0. Here it is natural to

associate with an I-curve J of a given mesh function u, the global

configuration

X = X(J) = {( k,>kIuk)}
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which employs the values of a set of alternating vertices p. of J together

k k
with the corresponding magnitudes of interpolated waves 6 and y In the

case of consecutive curves J2 > J1 the alternating vertices gj of J2

satisfy

qj = p. if j 4 k - 1 or if j ) k + 1

q= n

where n denotes the north vertex of the separating diamond 0. Figure 1 of

Section 4 can be used to illustrate two consecutive I-curves J2 ) J1 as

follows: J1 passes through the symbols sk. s + while Jk-1 uk sk uk11 k+1 whl

passes through the symbols sk I , uk, Wk, Uk+, Sk+• Here J and J are

separated by the diamond S2 whose vertices are labelled by the symbols Uk, Sk,

Uk+11 wk* The alternating vertices of J are labelled by the symbols sk

while the alternating vertices of J contain the sequence Sk2, Sk.1, wk,

Sk+1, Sk-2 "

It follows easily from the results of Section 7 that the new functional

P satisfies

(9.4) P(J2) - P(J) - cd2 (v) + c osc(J )C(v) + cIAI
3

if TVJ I << 1 and if J and J2 are two consecutive I-curves separated by a

mesh diamond with incoming waves V - (v1 ,...'v ), V m ('S. ,y). Here we put
n n

2 n2 n
d (V) 1 (6 - e (u )y ) and C(V) = 1 C(6.,yj)

j=1 i i s j j=1

As before the letter c denotes a positive constant depending only on the

-nequations, the scheme and the state u in R in the neighborhood of which all

analysis takes place. The proof of (9.4) consists of the observation that the

term 1/2 introduced in (9.1) and (9.2) accounts for the previous pairs of
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j-rarefaction waves, while pairs with opposite signs introduce only a quantity

on the order of the oscillation times the cancellation.

The weights employed in the transverse potential do not require

modification, so we have

2 3T(J 2 ) - T(J ) ( - CT(n) + cd (V) + clvi

for the perturbations of class N schemes introduced in Section 6, it follows

that, for approrpriate constants, the functional F = TV + cP + cT satisfies

F(J 2) - F(J 1) 4 - c{T(v) + d (v) + C(V)) + cIvI 3

if TVJ1 << 1.

Appropriate functionals for the hybridized schemes introduced in Section 8

can be constructed by switching the weights and * of T and P on and

off according to the following rule. Associate with an interpolated wave a

the unique mesh diamond 9 for which a is outgoing. If Q C C, let

(a,ua ) keep its original value as defined by (9.1) and (9.2), otherwise put

j = 0. If a and $ cross the same side of 2 and Q c C let (a,6)

keep its original value, cf. Sections 4 and 5, otherwise put P = 0. Thus, the

weights *. and * vanish if and only if the associated waves are outgoing for

a random choice diamond. Without confusion, we shall employ the notation P.

and T for the hybridized functionals with aforementioned truncated weights.

The stability proof for the hybridized functionals given in Section 10 is

motivated in part by several facts concerning the relative sizes of the weights

associated with the physical and numerical potentials for schemes in class N.

These facts, which we shall present below, are of independent interest and

hopefully will be useful in future investigations. Let us now restrict

attention to systems of two equations with eigenvalues AI and A 2 satisfying

(1.2) and the symmetry condition A 1(u) = -X 2(u). The well-known system
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w + p(v) =0, v -w =0
x x

arising in fluid dynamics and elasticity provides an example of symmetric,

genuinely nonlinear eigenvalues under the conditions p' < 0, p" > 0. More,

generally we note that systems of the form (1.4) have symmetric eigenvalues

X -X2 . For such systems it is natural to use class N schemes which are

symmetric in the sense that they employ a centered stencil, t = at' x = -0x

and functions w. = w.(a) which satisfy w, = w2, cf. Section 3. We recall

that the Lax-Friedrichs scheme is symmetric with w, = w2  0. A brief

calculation show that for such symmetric systems the weights r = r 12 and

= associated with transverse group interactions coincide and exceed the

weight associated with approaching transverse wave, i.e.

r = p> s .

We recall that if w = 0, r and p are uniquely determined by s and the

local base state according to formulas (5.9). For such symmetric systems we

also obtain a simplified formula discribing the effect of a local interaction

onthe transverse potential T:

T(J2) - T(J1) 1 - SlV ll 21(e - 2 )/(1 + e1)(1 + 2

3+ (s - 2pP 1 *2 + clvi

where (u = 6. - ej(Us)y. The formula (9.5) is useful in connection with the

problem of forming a linear combination of P and T which is decreasing on

the complement of the second order weakly interacting states W2. 'To this end

one might proceed by tryin4 to dominate the indefinite term of T,

(9.6) (s - 2p)*i142

with the corresponding negative definite terms by which the functional P is

reduced, i.e. the terms under the summation sign in the right hand side of the

following inequality.



22
(9J2

) 
- (J - 2 (Pj + T )(1 - 1 )(b - 1/2)*

(9.7) j=l1

+ C(osc J )C(V) + clvi

The formulas (9.5) and (9.7) suggest that one determine the restrictions on the

weights s,p and b. of symmetric schemes which imply that the following

quadratic form is positive definite:

2 2

(9.8) (Ij + t-1 - Pj)(b. - 1/2)*i + (s - 2p)*1*2
3j=l

Here, all of the coefficients are evaluated at the corresponding local base

state and the values of @j are regarded as arbitrary. Now for a fixed choice

of s, the form (9.8) is clearly non-negative for appropriate choices of b .

However, a brief calculation show that a positive definite form can not be

achieved with a weights satisfying

(9.9) p/2 > aI - 1/2, p/2 ) (b2 - 1/2)

This fact is of particular interest in connection with hybridized schemes since

the quantities a1 - 1/2 and b2 - 1/2 represent the maximal weights

associated with the numerical self-interactions of rarefaction waves as

registered by Pj; we have

aI > bI  and b 2 > a1

since (5.4) holds and 8 1 < I < 2" As we shall see in Section 10 the numerical

group interactions characterized by coefficients p and r generally lead to

favorable contributions in bounding the hybridized functionals and it is natural

to inquire into the extent to which they might compensate for the less favorable

effects of switching on and off the coefficients associated with self-

interactions.
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Lastly, we remark that for the purpose of dominating the indefinite term

(9.6) of T, one might appeal to the favorable term with leading coefficient

-s on the right hand side of (9.5) and ask what restrictions on the weights

s,p and b. of symmetric schemes are implied by the condition that the

following form be positive definite:

(Ii + Tj)( - j.)(b. - 1/2)1P2

(9.10) + s(O - e - W)il lv21/(1 + 8 i + 2 ) + (s - 2p) 1 *2

Here the quantity e > 0 is introduced simply to guarantee that a residual term

of order T(v) is available to compensate for the corresponding growth in the

total variation norm. A brief calculation shows that for that Lax-Friedrichs

scheme, and hence for symmetric schemes with w 1 = w2  sufficiently small, a

positive definite form (9.10) can be achieved with a choice of weights

satisfying (9.9). Thus, for class N schemes close to the Lax-Friedrichs

schemes one can work with functionals such that the maximal weights associated

with numerical self-interactions of shocks are less than half the weight

associated with transverse group interactions.

10. STABILITY OF HYBRIDIZED SCHEMES.

In this section we shall restrict our attention to systems of two equations

with eigenvalues satisfying (1.2) and A (u) = -X2 (u). Our results extend to

the more general class with eigenvalues satisfying (1.2) and A < 0 < A 2 but

we shall treat just the symmetric case NJ = -A 2 for concreteness. We shall

establish stability in the total variation norm for hybridized schemes which are

based on the tracking of major waves defined by parameters k,m and a(Ax),

cf. Section 8, and which employ the modified random choice generator, cf.

Section 7 together with a generator of the form * + q where € corresponds to
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a symmetric scheme in class N, cf. Section 9, with w1 and w2  sufficiently

small and where q is the associated perturbation constructed in Section 6.

Theorem 10.1. If o(Ax) satisfies (7.6) then for appropriate choices of m

and k, m > k, the hybridized schemes above produce difference approximations

u(x,t) = u(x,t;Ax,At) with the following property. If the initial data u0

lies in a small neighborhood of a state u € Rn and if TVu0 << I then

(10.2) TVu( ,t) 4 const.TVu0

(10.3) f 1u( ,t 1 ) - u( ,t 2)dx < const.( t I - t 2 + Ax)

2
provided that t,t, and t2  are less than const.Ax/o . Furthermore, the

constants depend only on u, the equations and the parameters which define the

scheme.

Remarks. The approximate L Lipschitz continuity (10.3) for the marching map

is an immediate consequence of (10.1); the difference approximation

u = u(x,t;Ax,At) is constant on each rhombus centered at a mesh point

2 2 1'/2(iAx,jAt) with sides of length As = (Ax + At ) oriented by the normals

a and B and assumes therein the value of the corresponding grid function at

(iAx,jAt). One may, of course, derive piecewise constant or piecewise smooth

difference approximations from a given grid function in any of several standard

ways and still maintain estimates of the form (10.2) and (10.3). We shall

comment further on this point in Section 11. Lastly, we note that the

particular choice a - Ax1-  leads to uniform estimate (10.2) and (10.3) over

time intervals of length 1/Ax -2c; the ratio of meshlenqth is held fixed and

satisfies the C-F-L condition.

Before proving Theorem (10.1) several preliminary remarks are in order

concerning the local action of the hybridized functionals. For notational
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convenience we shall work with a functional of the form

F(X) = cTVX + P + T

where c is an appropriate small constant and P and T denote potentials

with weights hybridized according to the rules of Section 9. In order to

distinguish various local changes in F according to the structure of the

incoming waves we shall employ the notation

6. if e RC; 6= 0 if + C

Y. =Y. if E CRC; y = 0 if Q C:j j if) +

6j = 6-6.j;y.j=y.j- yj

if 6. and y. are incoming j-waves of a mesh diamond 9 whose neighbors with) )

a common boundary along the ws and se sides are denote by - and S1

respectively. Given two consecutive I-curves J ) J separated by a mesh

diamond 9 with incoming waves V = (6,y) and local base state us, let

P(v) denote the incoming potential for self-interactions and G(v) the

incoming group potential:
222

P(O) = *j(6ju )62 + *.(yju )y2

j=1 s

G(v) = P(u s)M6 21 + r(u s)Iy y2 .

We note that r = p since we are dealing with symmetric schemes. Now, if

TVJI << 1, we have the following estimates with an appropriate small constant

C:

(10.4) F(J1) - F(J2) 4 -(1 - )D(v) - cC(v) - P(V) - G(V)
12 3

(10.5) F(J I) - F(J 2 ) < - ET(V) - d (v) + P(V) + G(v) + O(IVI
3

if 0 lies respectively in RC for (10.2) and in C for (10.3) where

D(V) = s1 6
2 Y1I + 1 {16 YI : 6 and y. approach}

The estimates (10.4) and (10.5) can be summarized by introducing a quantity
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I(Q), which equals the negative of the right hand side of (10.4) if 0 E RC

and the negative of the sum of the first four terms on the right hand side of

(10.5) if 0 £ C, and obtaining

F(J 2) - F(J I) 4 I(Q) + const.o2 (Ax)vI

by appealing to the fact that the waves in conservative diamonds have an order

at most 0. Thus, the problem of proving that F has at most mild growth along

orbits requires an estimate on the changes in F due to the switches between

generating functions. If QQ- and Q+ all beong toeither C or if 0 e RC

then I (P) < 0. Hence the only unfavorable contribution arises if R lies in

the set K of mesh diamonds in C with at least neighbor a-,Q+ in RC. If

K then F is augmented by the effect of switching on the coefficients

associated with group and self-interactions. We shall show that for each

diamond 0 in K one can associate a set of diamonds at lower time levels at

which compensating interactions have occurred. Specifically, we shall show that

if TVMkX is sufficiently small for k 4 p then

(10.7) ( (I(Q) . 1 0,kAtll < 0

if k ( p. Combining (10.5) with the property that

F(MX) < F(X){1 + const.o2 (Ax)) - I(s,)
j J

where {t.) denotes the set of all mesh diamonds separating the I-curves

associated with X and MX, we obtain
F(Mkx) < 2F(X) if p < const./0 2 (Ax)

and TVX << 1. Furthermore, in the course of the proof of (10.7) we shall

establish a slightly stronger estimate which facilitates the proof that the

difference approximations converge to an exact solution. The stronger estimate

assumes the form
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(10.8) C ~)< z*(Q)

where 0 < c << 1, both summations are taken over the mesh diamonds S2 which

lie in a given strip [0,pAtl and the interaction term I* is defined by

(10.9) I*(S) = T(v) + d2 (V)

(10.10) I*(Q) = D(V) + C(v) + G(v) + P0 (v) + H(v)

if Q lies respectively in C for (10.9) and RC for (10.10). Here P0

records the self-interactions associated with those incoming waves

V (6,y) of 9 which have maximal coefficients and enter from a diamond in

C, i.e.

(v) = -2 + -2

0 1 *2

and H(v) records the effect of switching off coefficients at the starting

points of major waves:

2
H(V) m

if Q contains an initial segment of a major wave while H=0, otherwise. The K
factor of m is introduced merely as a reminder of the definition of H. We

deduce from (10.8) that

F(Mk X) ( 2F(X) - const. I I*(Q) if k 4 const./o 2(Ax)

and therefore that total amount of interaction as measured by I* in a strip of

the form [0,pAtJ satisfies

(10.11) Y {I*(Q) : e C t0,pAt]} 4 const.TVu 0

if p ( const./o 2 .

Proof of Theorem. Consider a fixed strip (0,pAt] and denote by K the set of

mesh diamonds 9 therein such that either Q- or 0 lies in RC. We shall

indicate how to associate with each SI in K a collection of diamonds

r =r (Q), j = 1,2.... , and compensating quantities q(rj,Q) such that
j j
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lq(?,D)l 4 JI(Tj)I

I(a) + q(-rj,Q) < 0

(10.12) j

Kc K

It then follows that

K Kc K K j

Here diamonds of the form r.(Q) and ? (9') may coincide for distinct
k

and Q'. The estimate (10.6) simply follows from the fact that compensating

quantities q can be located without appealing to a small fraction of I*(0).

Fix 9 in K. In the case study below we shall locate diamonds r*

having interactions which compensate for the contribution to I(Q) from waving

leaving r+ . The set of all diamonds of the form r. or r, provides the

desired collection {r.}. Thus, let us suppose that Q- lies in RC and letJ

1 and 62 be the waves in the Riemann problem with data (Uw, Ue) where w

and e denote the values of the difference approximation at the west and east

vertices of 9 * We shall first treat the case of two shock waves. The

remaining cases are somewhat easier and will be discussed below.

Case 1. 1 4 0, 62 > 0

Subcase 1. Suppose both 61 and 62  cross the ne side of Q . If Q

contains an incoming major j-rarefaction wave then

c(S-) + D(-) > cc

since there exists no outgoing rarefaction wave for 0 . As before we shall

denote by c any of various constants depending only on the scheme, the

equations and the neighbor in which all analysis takes place. On the other hand
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I(Q) 4 ck a

Hence, in this situation we associate with Q just a single diamond r =-

and put

q(rltQ) = aC(Q-) + aD(-)

Now, if 0 contains an incoming major j-shock then

[ C(S I ) + D(Q i ) ) ca

where (0 i denotes the set of diamonds which it intersects. Here, we put

ri(Q) = a and

q(r,0) = aC(Qi) + aD( )

Subcase 2. Suppose 6 crosses the wn side of Q while 62 crosses the

ne side of Q-. If Q contains a major 2-wave the analysis of subcase 1 is

applicable. Let us therefore consider the situation where 1 contains a major

1-wave. Here the only non-negative contribution to I(Q) associated with waves

leaving 0 is given by b2 62 and appropriate compensation can be obtained as

follows. Let 6 be an outgoing j-shock of an arbitrary diamond in RC. We

introduce a backward shock tree T(6) through 6 by starting with 6 and

repeating the following process: given an outgoing j-shock of a diamond in

RC associate with it the corresponding set of incoming j-shocks, if any. Such

a tree T(M) is contained in a union of RC diamonds, say Qk' each having

one outgoing J-shock and at most two incoming j-shocks. With reference to the

particular shock 62 we shall refer to a corresponding diamond 0k as a

terminal diamond for T(62 ) if any of the following conditions hold:

+
(10.13) S1 lies in C and contains an outgoing 2-shock,

k

say a2 , crossing its wn side
+

(10.14) S1 lies in C and contains an outgoing 2-shock,
k

say 82 crossinq its ne side

(10.15) Sk contains no incoming 2-shock.
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We shall refer to such associated waves a and 0 as terminal shocks for
2 2

2
T(6 ). We can estimate 6 in terms of terminal shocks of TO'2) as follows:

2 2 2

(10.16) 62 2 2 + +2 1 S2 (k) + c osc T(62 ) D( )
k k

Here the first two summations are taken over all terminal shocks of T(6 2) as

indicated in(10.13) and (10.14); S 2(S ) records the shock-shock interaction of

the second field in 0 k' i.e.

S( k ) 2 (D3k

if Qk contains incoming 2-shocks E and n while S2 = 0 otherwise; and

osc T(6 2) denotes the largest wave magnitude in the union of k . Thus, in

the case of difference approximations with small oscillation, the sum of squares

of terminal shocks plus the total shock-shock interaction on T(6 2) bounds the

"output" 62 modulo a small fraction of the total random choice interaction
2

occurring on T(62). The estimate (10.16) can be established by proving by

induction that

2  a 2 + 2 + 2 S2(0k)

+ 4c osc T(62 ) D( k ) + c
2 1 D2 (k)

where the constant c is chosen so large that the incoming and outgoing j-waves

of a general random choice interaction satisfy

ei. - (6. + Y.)1 4 cD(6,y)

cf. Section 7. At this point we remark that we can choose the weights b2

(and a1 ) to be constant since we only need (5.4) to hold. If b2  is

constant, we obtain an estimate of the form

b2 2)6 2 b2 2 + b2 2 + cb2 osc T(62 ) D(Qk)

(10.17)
+ 2b 2  S2(k)
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for which there exist obvious compensating quantities q(rFS) for the first

three term on the right hand side. It remains only to obtain compensation for

the last term of the right hand side of (10.17). Now, since b2 > 1/2, the

shock-shock interaction (with coefficient equal to one) in D(Nk ) does not

cover this last term. However, we can obtain adequate compensation for it by

appealing to diamonds of the form 0k. Specifically, in subcase 2 we shall

associate with a collection of diamonds r. such that3

U jc USk U Qk

We partition the analysis of subcase 2 as follows.

Subcase 2A. Suppose Q satisfies (10.13). Let 8 ,8 denote the outgoing
k 1 2

waves of 0k crossing the ws side of. 0k and aiu2 the outgoing waves of

crossing the se side of §Z . Now if k contains a major 2-wave then we
k k k

may proceed exactly as in subcase 1. Let us assume therefore that nk contains
k

a major 1-wave. If a lies on a major wave then Icl I ) ma and we can appeal

2to (a small fraction of) the quantity -a1a1 which appears in I(Vk ); we have

2 22
-a1 a 4 -a1m a

with m large. Hence, the only difficulty arises in the situation where we

know only that 81 lies on a major 1-wave and this can be handled as follows.

Since 81 and 82 cross the same line segment, the definition of the modified

random choice generator, cf. Section 7, implies that either

181821 4cc2 or 1811 + 1821 )La .
2

Suppose the former inequality holds. We write the term a a2  appearing in
2 2

-I(s k ) in the form

(10.18) a 2 2 = b a + (a - b )a 2
22 2 2 2 2 2

We recall that a2  depends on the value of the difference approximation at the

south vertex of Qk and satisfies a2 > h 2 . The first term on the right hand

side of (10.18) appears in (10.17) and we have a residual of the form
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(a - b )a which we take advantage of as follows. We note that if
2 2 2

(10.19) (a - b )2 N 2b S 2(
2 -2 02 2 2 k

we have located adequate compensation for the shock-shock interaction in Qk

Now (10.19) holds if

182 1 (a2 - b 2)1a /2b 2

since S2 (Sk) = 282 z2 1. Equivalently, (10.19) holds if

(10.20) a 4 (a2  - b2 )1a /2b2

2since 8 lies on a major wave and 1882 I C c 2. Therefore no further
1~ 12

analysis is required unless we are faced with the opposite inequality from

(10.20), i.e. unless

(10.21) [21 4 2b2 C/(a2 - b2)

However if (10.21) holds we can locate adequate compensation q in the diamond

9 as follows. Inequality (10.21) implies that

S2 (ak) 4 {2b 2 c/(a2 - b2 )}082

In a lemma below we shall show that 1818 1 4 c(P) where
1 2 k

1(k) = G(ak) + D(Qk) + H( )k

We therefore obtain ld2 2 1 cI((k) and

(10.22) 2b S (S1k) £cI(k).
2 2 k k

We conclude from (10.22) that if 1018 8 2 c 2  there exists an appropriate

compensating quantity q for the shock-shock interaction in Sk since we have

an estimate of the form 22
(10.23) b 2 + 2b S (0k ) < £cI(SI ) + a 2

with small C. We note that (10.13) can be strengthened by the inclusion on the

2left hand side of a term of the form cct2 . This can easily be seen by writing

(10.18) in the form

2 = 2 _ b2)a2/2 (a2
2 2 2 2 2 2 2 2 )2

and proceeding as above. This accounts for the presence of the term P0 (v) in
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(10.10). We complete the discussion of subcase 2A by considering the

alternative situation where 18 I + Is21 > La. Here, if 1821 ; ma we can

appeal to the cancellation process exactly as in subcase 1. On the other hand

if 121 < m we obtain

I(Mk) ) c(L - m)a2

since

IB82 1 ( cIQk) and 108I > (L- m)O

Thus if L is sufficiently large it follows that I(n) is bounded by a small

fraction of I() and the desired compensation is realized.

Next we shall establish the lemma required in subcase 2A.

Lemma. If C and C denote a pair of outgoing waves crossing either the1 2

wn or ne side of a diamond Q in RC then

fe 1 e2 f < ci(Ol C{G(2) + D(Q) + H(Q)j

Proof: Let 6,62 denote the incoming waves crossing the ws side of Q and

YiY2 the incoming waves crossing the se side of S1. We have

e -(6 + Yj)I 4cD(Q) .

If + and 9- both lie in RC the structure of the modified random choice

generator implies that 61 = Y2 = 0 and hence

le IC21 ( c16 2Y 11 = cD(Q)

If f- e C and $+ C RC then y2 = 0 and we obtain

Ie1C21 < 161621 + cD(S) ( cG(Q) + cD(Q)

Similarly if S+ e C and n- e RC then

SIl2 ( cG() + cD(9) .

Finally, if 9+ and " both lie in C we obtain the simple estimate
22

Il 121 cm 2 ( cH(2) .

The proof of the lemma is complete.
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Subcase 2B. Suppose that Qk satisfied (10.14), as in subcase 2A the situation

if simple unless we know only that Qk contains a major 1-wave. Supposing this

to be the case, we proceed as follows. If 8, lies on a major 1-wave then

181 I ma and we can appeal to (a small fraction of) the quantity 
-b 82

11

which appears in I( k ) and obtain

2 4 _b m2 2
1 1

for appropriate compensation. Therefore, let us assume, on the other hand, that

a lies on a major 1-wave and let us estimate S2 (i k). Now S ( ) vanishes

if a2 = 0. If a2 * 0 then either

2

If the former inequality holds then

S (a k ) = Ia 8I < Colo 1 e1a 821 CD( •
2 k 2 2 2 1 2 k

since la I > a. If the latter inequality holds then we remark that either

la I > mo in which case we can appeal to the cancellation process exactly as

in subcase 1 or lI < mo in which case
2

D(Q ) > 182a I ) 1 1(L - m)a > (L - m)2 a I/m
k 2 1 2 2 2

since lIa 1  ) (L - m)o. Hence if L is sufficiently large

2b2S() ( D(2k
2 2k m k

and we conclude that a small fraction of the random choice interaction in Qk

provides adequate compensation for S 2( k ) (if m is large).

Subcase 2c. Suppose Q is not a terminal diamond. Then Q and Q both
k k k

lie in RC and we proceed as follows. If 81*0 then a2 = 0 and no further

analysis is necessary. If 81 = 0 then we may assume that la I > 0. Now,

if a < 0 then (10.24) holds. Under the first inequality of (10.24) we obtain
2

an adequate estimate of the form

2b2 S 2() = 2b 2a 2821 4 cD( ) k

since
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f
D(S k ) Sla 2 a I I sal2 •

Suppose the second inequality of (10.24) holds. If Ia 2 ) ma then no further

analysis is required as our previous cases apply. If a 21 < ma then

III > (L - m)a and we obtain

D(I k ) ) s82 a 1 1 s(L - m)01821 > s(L - m)la 28 21/2

s(L - m){2b2 S 2(S k)}/4b 2

since we may assume that Ia 2 ( 2a, otherwise the situation if trivial.

Hence, if L is sufficiently large, a small fraction of D( k ) dominates the

shock-shock interaction of the second field in k" This completes the proof of

case 1.

We note that the presence of the terms (10.9) and (10.10) in I*(P) is

simply due tothe fact that we were able to obtain appropriate compensation for

the positive terms in I(9) by appealing to only a fraction (less than one) of

the available negative terms.

It remains to discuss the cases where the Riemann problem with data

(U w,1U e ) produces a shock and a rarefaction wave or a pair of rarefaction

waves. We note that if the strip under consideration involves no splitting of

rarefaction waves by the sample point then the analysis of case I applies

virtually without modification to the remaining cases. If a sample point splits

a rarefaction wave, only a small change in the above analysis is required since

the splitting of rarefaction waves is not by itself produce any wave

amplification. In this connection we note that it is primarily to handle one

technical point connected with wave splitting that we restrict attention to

symmetric schemes with w, and w2  small.

We begin with a remark needed to construct the analogous rarefaction

trees. Let a and 8 denote the J-waves crossing the wn and ne side of
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a diamond 9 in RC and 6 and y the J-waves crossing the ws and se

sides respectively. Suppose that a 0, 0j ) 0 and consider an ordered

partitioning of a. and 0. of the form

m n

a jk' y jkj k=1 ik j k=

where a k and 0jk are j-rarefaction waves contained in a. and 0.

respectively such that the left edge of ajk coincides with the right edge of

Q,k+1 while the left edge of 0 coincides with the right edge of 0j,k+1

It is easy to see that there exist partitions of the incoming j-rarefaction

waves (if any) which conserve wave magnitudes modulo a quantity on the order of

D(Q) as follows. Let

W jk = jk if 1 k 4 m; W jk =j,k-m if m + I < k 4 n

Case A. If 6 ) 0, y > 0 then there exists a j-rarefaction wave 6'

contained in 6 which can be partition into j-rarefaction waves 
6'
]kI

1 4 k 4 p, in such a way that

6' 6' and- 6' I + l I in cD(S2)

k=1 jk k k jk q+1 jk

for appropriate q. It is understood that one may have q = p in which case

the third summation in (10.25) is taken to vanish.

Case B. If 6 0, Y 4 0 then there exists a J-rarefaction y! in Y

which can be partitioned Into Y' so thatJk

Y k Y k an - Y' I + IW jkI ' cD(S)

k=i k-1 k q+1k
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Case C. If 6 > 0, yk ) 0 then partitions

S. k 1 6 jk and y = j Yjk
Sk-l j=1

can be formed in such a way that either

(10.26) k-i jk +jk r Y 4 cD(R), or
jk jkjk J,k-p

J=1 p+l 1 JkP

p-1
(10.27) 1 Ij -6 1 + I IV -Y I + In -a Yj I 4 cD(S)

k=j1 jk jk jk j,k-p+1 jp jp CD

We note that virtually the same magnitude-preserving partitions are employed in

[13] for the purpose of constructing characteristic curves. Using such

partitions, an analogous backward rarefaction tree through a given outgoing

rarefaction wave of a diamond Q in RC can be constructed by repeating the

following process which associates with a given outgoing j-rarefaction wave

jk the corresponding incoming wave or waves according to the following rules

In Case A: ir -6'
jk jk

In Case B: jk Yjk

In Case C: If (10.26) holds then

Rjk - 6 jk if k 4 p and wjk Yj,k-p if k ) p +1

If (10.27) holds then

rk- 6jk if k r p -1 and wjk i YJ,k-p+1 if k ; p + 1

Vkjk jkjp, •k

Thus, only in Case C, (10.27) does not associate a pair of waves with a given

outgoing wave. We now proceed to sketch the remaining cases.

Case 2. 61 0, 6 4 0.
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Subcase 1. Suppose that 6 crosses the wn side of Q while 62 crosses

the ne side of Q . This subcase can be handled exactly as in Case 1.

Subcase 2. Suppose that 6 is split by the sample point into a 1-wave 6'
1 1

crossing the wn side of 9 and a 1-wave 6" crossing the ne side of S1

along with 62: 6 = 6 + 6". Here we must locate compensation for terms of

the form

b1 61;2 + P6 62

which enter I(S). Now if - contains either an incoming major 2-wave or an

incoming major 1-shock the analysis of Case I suffices. Let us therefore assume

that Q- contains an incoming major I-rarefaction wave. Let 81,82 denote the

incoming waves of Q crossing its ws side and a1a the incoming waves of

Q crossing its se side. Let 0I and 92 denote the diamonds which

intersect the ws and se sides of Q respectively. For concreteness we

treat the situation where 01 and S2 both lie in RC; this case provides the

primary example of the switching-on of weights due to the splitting of a

rarefaction wave. Here we proceed by tracing back the major 2-rarefaction

wave. Here we proceed by tracing back the major 2-rarefaction wave through a I

to the diamond r which contains its initial segment C. Now, if c enters

r from a diamond in C then C ) ma and we can appeal to a quantity on the

2
order of 2 appearinq in I(r). On the other hand, if c enters r from a

diamond in RC then C > ka and we shall show that there again exists

compensating interactions on the order of c2  in certain diamonds near r to

be described below.

Before proceeding with the latter case we shall remark on the situation

where more than one major rarefaction wave is traced back to the same diamond

r. Now, if (c } denotes the collection of all waves of the above type which
J
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can be traced back to the same E, then, modulo a quantity equal to a small

fraction of the random choice interaction in the associated diamonds, we have

2 2 2 C
C 2 if e ) ma and > k if c ; ko

since in both situations e < 0. Indeed, without loss of generality we have

jC £=

modulo interactions, and therefore in the case, say, e > ma,

2 = C2 + C I C£I2 + (1 - 1/m)C 2

Thus, the splitting of rarefaction waves produces a situation where the sum of

the squares of the terminal waves Cj associated with the switching-on of

weights is a small fraction, here 1/m or 1/k with m and k large, of the

square of the initial wave C, modulo a quantity on the order of the same small

fraction of the total random choice interaction as measured by D in the union

of diamonds through which the traced waves pass.

Our analysis of the case where e enters r from a diamond in C is

subdivided as follows.

Subcase 2A. Suppose r- and r+  both lie in RC let (616 2) and (yi,y 2

denote the incoming waves of r crossing its ws and se sides. We have

(10.28) e= 6 + y + OD()

Now if 6 = = 0 then Jej < cD(r) and we easily obtain appropriate

2compensation of the form c by appealing to a small fraction of D(r). Indeed

we have

c2 c(osc u)D(r)

since D(r) is itself on the order of the oscillation of the difference

approximation u. Let us therefore suppose that 6 and yI do not both

vanish. For concreteness assume 61 * 0. It then follows from the definition

of the modified random choice generator that y2 = 0. If y= 0 then
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S- 6I contradicting the fact that E is the initial segment of a major

rarefaction wave. On the other hand if y1* 0 then a simple calculation shows

that

(10.29) 1611 + IY1I 4 c16 2 1 ,

since both 61 and y1 are non-zero rarefaction waves. In this connection we

note if 62 = 0 then at least one of the waves 61,Y 1 must vanish since the

associated eigenvalue X 1 increases from left to right across 1-rarefaction

waves. It follows from (10.28) that

D(F) + (-) > ci6 2Y11 + c1616 2 1 > c(1
6 11 + 1Y1 1)2

and we conclude that

£ 2 c{D(r) + Y(r-))

to which we appeal for appropriate compensation. The situation where y 0

is handled in a similar fashion.

Subcase 2B. Suppose F and r both lie in C. If f6 if < (yl we appeal

2
to -aIy2 appearing in I(F) and obtain

£2 4 By2 + 2cD(F )

using (10.28). Hence a quantity on the order of

2-aly 1 + (osc u)D(r)

bounds £2 . If 1611  y II we proceed as follows. Either y2  or 62 lies

on a major 2-wave. If y2  does then

(00.30) c 4 2ko + cD(F)

since 61 4 ko. In this situation we appeal to the quantity -a2Y 2 appearing

in i(r) and note that modulo a small fraction of D(r) we have an estimate of

the form

2 > 22 (a 2 2/4k 2
a2y2  2

using 1y2 1 > ma. Here we are led to take m much larqgr than k. Next,
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suppose that 62 lies on a major 2-wave. In this situation we simply repeat

the argument given in subcases 2A and 2B and in subcase 2C below with r

replacing r and use the fact that, modulo the interaction term D(r) we have

1 ka/2 since 1611 Iy 1 1.

Subcase 2C. Suppose r lies in C while r+  lies in RC. If 16 1y 1
2

we appeal to -b161 appearing in I(r) and obtain an inequality of the form

b16 2> b12/4 - cD2 (r)
1 1 1'

Next, let us suppose that 16 11 < 1Y11. If 62 lies on a major wave then we

appeal to -b 6 appearing in I(r) as follows. We have (10.30) since
2 2

61 4 ko and 161 < 11 1. Therefore

2 2 2 2 2 2 2
b26 b mo > b m e2/4k -cD (r).
2 2 2 2

On the other hand if y lies on a major 2-wave we simply repeat the arguments

above replacing r with r and using the fact that

Y1 > ko/2 - cD(r)

This completes the sketch for the three subcases.

The remaining term p6;'2  can be handled as follows. From the definition

of the modified random choice generator we have =8 =0 since S1 and
2 1

S1 lie in RC. Thus, a term of the form
2

sla2011 + ck6d;
2

is available to compensate for p6"62 . Writing 6 =TO1  with 0 < T < 1, we

require an inequality of the form

(10.31) p6d'6 2f = pTItz 201 1 < s18 1a21 + ckT a

But since 8 I/a 21 1/k, (10.31) is equivalent to the condition
2

(10.32) pT < s + cT

Now an appropriate restriction on the C-F-L number guarantees that p is only

slightly larger than s which implies that (10.32) is valid. We lastly remark
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that the case where 6 1 4 0 and 62 ) 0 and the case where 6 ) 0 and

62 0 are treated in the same fashion as above.

11. CONVERGENCE OF HYBRIDIZED APPROXIMATIONS.

In this section we shall consider the class of systems and hybridized

schemes for which we established stability in Sec.ion 10 and show, under the

additional hypothesis that the error function p associated with the

equidistributed sequence and the switching function a(Ax) satisfy

3/4 1/2
lim *(n)n = 0 and lim *(1/Ax)/(Axo) = 0
n+= Ax+0

that a subsequence of difference approximations converges to an exact

solution. We note that standard arguments using the stability estimates (10.2)

and (10.3) yield the existence of a subsequence of difference approximations

converging pointwise a.e. to a function u which is a function of bounded

variation in the sense of Tonelli-Cesari [10, 331; indeed, the subsequence

converges to u in L of the space variable for each fixed time t. We also

note in passing that our stability analysis shows that the total variation of

the difference approximations along (space-like) lines with speed of propagation

greater than or equal to Ax/At in absolute value is uniformly bounded and

consequently that there exists approximate L i Lipschitz continuity in

directions normal to such lines. It remains to prove that u satisfies (1.1)

in the sense of distributions, equivalently that the contour integral

f v(u)ds; v(u) = vtu + v f(u)

vanishes for all piecewise smooth closed contours C. As we remarked earlier,

-76-



one need only verify this property for a substantial class of contours, for

example, parallelograms with sides parallel to two fixed directions.

We shall begin with several !omments which will facilitate the convergence

proof.

Conservative Schemes. Consider a conservative scheme based on a centered

diamond shaped stencil with a generating function * derived from an equation

of the form

H(unU e ) - H(u ,u ) + G(unU w ) - G(uu) 0
nt e w s ny w e s

where H and G are defined by (2.5) using normals a and 8. Let Q(i,j)

denote the mesh diamond centered at (idx,jAt) and regard it as the union of

four congruent triangular regions Tne, Tnw, Tws abd Tes obtained by

intersection with the four standard quadrants centered at (iAx,jAt); here the

triangles share a common vertex and have hypothenuses indicated by the

subscripts. Suppose that the values of all difference approximatins under

consideration lie in a small neighborhood N of a fixed state - C Rn. A

simple application of the implicit function theorems shows that if the matrices

OtI + a Vf(u) and 8tI + 8xVf(u)

are invertible, i.e. if the C-F-L condition holds, then there exist smooth

maps 8 and * defined in a neighborhood of (u,u) such that

H(a,b) = ati (a,b) + ax f{8(ab)}, n(a,a) = a

G(a,b) = 8 t (a,b) + 8 xf{(a,b)}, *(a,a) = a

Using 9 and * one can associate with a grid approximation u(Ax) of the

scheme, an everywhere defined piecewise constant function u = u(x,t,Ax) such

that

f V(u)ds =0
C
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if C is any closed polygonal arc consisting of line segments joining adjacent

mesh points: if we put u - 6(u Ue) in Tne, u - (Un ,u) in T,

u - (UwU) in Tws and u = V(u eu s ) in Tes we obtain

f v(u)ds = 0
as(i,j)

for all mesh diamonds 9 and consequently (11.2) by addition. Now, if u(Ax)

satisfies uniform estimates of the form (10.2) and (10.3) then so does

u(x,t,Ax) and it follows that a subsequence converges to function say u such

that

(11.3) f v()ds = 0
C

for all parallelograms C in t > 0 with normals a and B. Thus, u is an

exact solution.

Perturbations of Conservative Schemes. A similar argument applies to the

perturbed schemes introduced in Section 6 with generating functions of the form

4 + q where

iq(u wusu e ) ( const.(Iu w - u si2 + Ius - U .

Using the function n and * associated as above with the generator 4 we

obtain

(11.4) f V(u)ds = O(Ax)(lu w - u + -el

al(i,j)

for the corresponding piecewise constant approximation u = u(x,t,Ax) obtained

by setting u - O(unue ) in Tne, etc. Therefore, if u(Ax) satisfies

uniform estimates of the form (10.2) and (10.3) it follows that a subsequence of

the functions u(x,t,&x) converges to a function u satisfying (11.3) for all

associated parallelograms C provided that the maximum magnitude of

interpolated waves vanishes as the mesh is refined, i.e.
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lim sup[lu(x,t) - u(x + Axt + At)I + Iu(xt) - u(x + Ax,t - At)I} = 0
Ax+O

where the supremum is taken over all mesh points (x,t), say in a given bounded

set. Thus, a stable and convergent sequence of difference approximations for a

perturbed scheme yields an exact solution provided that the maximum magnitude of

waves in any bounded set of t ) 0 vanishes as the mesh is refined.

The Random Choice Scheme. With a grid function u(Ax) produced by the random

choice method we shall associate the standard piecewise, smooth approximtion

u(x,t,Ax) as follows. Let

R(a,b) = {(x,t) : a - Ax < x < a + Ax, b < t < b + At}

Let u, = u1 (x,t) denote the restriction to

(11.5) R(iAx,jAt) W(i,j)

of the solution to the Riemann problem at time t = jAt z with data

(uw ,un ) having a jump at x = iAx, where uw and un denote the values of

u(Ax) at the west and north vertices of 9(i,j). Similarly, let u =

u2 (x,t) denote the restriction to

(11.6) R{(i - 1)Ax,(j - 1)At} f2(i,j)

of the solution to the Riemann problem at time t = (j - 1)At with data

(uw ,us) jumping at x = (i - 1)Ax; u3 the restriction to

(11.7) R{(i + 1)Ax,(j - 1)At} Q(i,j)

of the solution of the Riemann problem with data (us,ue) at t = (j - 1)At,

x = (i + I)Ax. Define u(x,t,Ax) in Q(i,j) to be U1, u2 or u3 according

to the location of (x,t) in one of the three corresponding subregions (11.5),

(11.6) and (11.7) (we will shortly employ the definition above in the setting of

hybridized schemes, for those diamonds n(i,j) in RC).

Now the integral around the boundary of a typical diamond Q(i,j) can be

expressed in terms of the location of the corresponding sample point as follows:
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(11.8) f v(u)ds = E+(i - 1,j - 1) + E-(i + 1,j - 1)
3 (i,j)

where

Ax 0
E = f un - R(x/At;uu e)dx, E f u n - R(x/At;u 'U )dx

U -Ax

Here u w  and ue denote the values of the corresponding and function at the

west and east vertices of Q(i,j). Now if S1 is parallelogram in the x - t

plane which can be represented as a union of mesh diamonds 0(i,j,Ax) for each

Ax, i.e.

(11.9) Q = U{(SI(i,j,Ax) : (i,j) C A(Ax)}

for an appropriate index set A(Ax) then

E (i - 1,j - 1) + E-(i + 1,j - 1)

(i,j)EA(Ax)

approaches zero as the mesh is refined by results on Liu [26], if TVu0 << 1.

It follows that the limit of sequence of random choice approximations converges

to an exact solution u. We note that large parallelograms of the form (11.9)

exist if we choose for example a sequence of mesh lenghts of the form

n
(Ax) n= const./2 . For general mesh lengths a trivial modification of the

above argument is required to obtain the save conclusion.

Hybridized Schemes. Here we shall associate with a given grid function u(Ax)

a piecewise smooth approximation u(x,t;Ax) by following the procedure above

for conservative (or what is the same perturbed conservative) schemes if

(i,j) lies in C and the procedure for the random choice method if Q(i,j)

lies in RC. For such u(x,t,Ax) the contour integral around the boundary of a

fixed parallelogram Q of the form (11.9) can be expressed as the sum of three

terms Ii, 12 and 13. The first term 11 records the contribution from

diamonds Q(i,j) in C due to the perturbation q:

I, = O[Ax I {e2 : crossing a diamond S(i,j) in C}j
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The second term 12 records the contribution along the boundary B between the

two regions formed with mesh diamonds in C and RC respectively and takes the

form

12 = O(Ax.TVu)
B

The third term represents the random choice error and takes the form

(11.10) 13 = I {E+(i-1,j-1) + E-(i+1,j-1) : a(i,j) E RC 01 + m(Ax),

where m(Ax) represents the alterations to the standard random choice error due

to the use of the modified random choice generator as we showed in Section 7,

m(Ax) vanishes as the mesh is refined.

It follows immediately from (10.2) that Il, has the order a(Ax) and

thus vanishes in the limit. We shall show below that the total variation of the

difference approximations u(x,t,Ax) around the boundary B = B(Ax) has the

order o(l/Ax) and thus 12 vanishes in the limit. Finally, the argument of

Liu for the random choice method applies with an only trivial modification to

show that 13 vanishes in the limit.

The analysis of 12 proceeds as follows. Fix a difference approximation

u = u(x,t,Ax) and a time strip (0,T]. Let K i denote the set of all mesh

- +
diamonds in C (0,T] such that either Q or lies in RC and B1  the

set of all waves c with the following three properties: C is incoming with

respect to a diamond Q in K if C crosses the ws side of Q then Q

lies in RC; if c crosses the se side of Q then Q+ lies in RC. Let

K2 denote the set of all mesh diamonds Q in RC n (0,T] such that either
+

S1 or e lies in c and let B2 denote the set of all waves c with the

following three properties: C is an incoming wave with respect to a diamond

9 in K2 ; if £ crosses the ws side of a then 0 lies in C, if c

crosses the se side of 0 then Q lies in C. We have B = B1 U B 2. For
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simplicity we suppress the dependence of Bj on the mesh length. We shall show

that

(11.10) lim AxTV u(o,-,Ax) = 0
Ax4O B (Ax)

1

a similar analysis produces the same result for B2. To this end, let us fix a

difference approximation u(x,t,Ax) and a diamond 9 in B. We shall analyze

the contribution due to waves crossing the ws side of 0; the se side is

treated in a similar fashion. Let us therefore assume that 9- lies in RC

and for concreteness that the Riemann problem with data (Uw,ue), where uw

and ue  denote the values of u at the west and east vertices of -, gives

rise to two shock waves. Let (61,6 2) and ('1,y 2) denote the incoming waves

of n- crossing its ws and se sides; let (alU 2) and (01,0 2 ) denote the

outgoing waves of a crossing its wn and ne sides. We consider the

following cases.

Case 1. Suppose that a major wave terminates in Q . Then the total strength

S of waves leaving 9 and entering 9 is less than ca. If we associate

with 9 the diamond r which contains the initial segment of the major wave

terminating in - we have H(r) ) ca and therefore

AxS 4 cAxo 4 cAxH(r)/a

Since the sum of squares of all initial segments of major waves is finite, i.e.,

H 1(r) 4 c

it follows that the total contribution from all waves of the above type (in a p

fixed strip f0,T1) satisfies

Ax I S 4 cAx H(r)/c 4 cAx/a

and therefore vanishes by (7.9).
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Case 2. Suppose that no major wave terminates in Q . We may assume that 9

contains a major 1-wave and that a 1-shock a1 crosses the wn side of

while a 2-shock crosses the ne side of Q • Let 01 and S1 denote the

diamonds whose ne and wn sides coincide respectively with the ws and

se sides of Q-. We shall first treat the subcase where I and 2 both

lies in RC. Here we have

2 =2 + Y + OD(i).

Now if y lies on a major wave then ly I > 0 and we obtain an estimate of1 1

the form

Jo8Is 1 1 621 + 1y1Y2 1 + O{oD(9_)}

( c{D(S-) + (n2

If 6 lies on a major wave then 16a1 ) 0 and we obtain

10621 16162 cI()

But, if 6 *0 then y2 = 0 and we obtain

o21 I 1o621 + O{aD(Ql-)} 4 c{D(f-) + I(2 2

Thus, the total strength of waves corresponding to the subcase where fI and

12 both lie in RC is bounded by const./0.
2

The subcase where Q1 and S2 both lie in C is even simpler since we

have an estimate of the form

1821 ca 4 cH(Q-)/G

2
using the fact that H(P ) > c. .

If Q I C and 2 e RC we proceed as follows. If Iy 1 ) 0 we remark

that

IO 21 4 c{D(-) + i(a3 )

as in the first subcase, while if 16 I 1 0 we have

IO21 4 cH()

as in the second subcase. It remains only to treat the subcase where
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and 12 C C. Now if Y lies on a major wave then the analysis of the first

subcase applies. If 6 lies on a major wave then we proceed as follows. Let

p(Ax) be a positive function such that

lim W(Ax) = 0 = lim Ax/pa
Ax+O

We distinguish two situatins accordingly as 18 2 po and 18 2 < pc. In the

first situation we have

AxI 2 I = (Ax/l82 1)02 4 cax{62 + y+ D( )}/pc

We observe that 1621 < cI(R 1)/a using the fact that

161621 1 ci(a 1)

But we need only treat the case where 1621 co. Therefore
2

62 r c (a 1 )

and

AxIS21 < cAx{Y(9 1) + I*(9-)/va

since y2 is associated with a maximal weight. In the situation where

18 1 pa we have 0 2 9 W l

and consequently the sum of all such waves 8 in a given strip, say
2

(t,t + At] satisfies

where X is the associated configuration. Since the number of mesh strips in

(0,T] has order I/Ax we conclude that the total strength of all such waves

82  in [0,T] satisfies

1 1821 < cp/Ax

This completes the proof of (11.10).

1/2
We note that optimal choice of p, i.e. p = (Ax/a) 1

, leads to a growth

estimate of the form
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1/2 :TV u(.,*,Ax) 4 const./(Axa) .
BIUB2

We conclude this section with a few brief remarks concerning the first term

on the right hand side of (11.10). In this connection we shall first comment on

the argument used in [26) to show that the error associated with the random

choice method vanishes for an arbitrary equidistributed sequence. Fix C > 0

and T > 0. In (26] the time strip (0,T) is divided into substrips of equal

length k(e) and the error associated with each substrip is estimated using a

partitioning of elementary waves, cf. Lemma 3.2, (261. It is then shown that in

the limit as the mesh is refined the sum of the contributions of each strip has

the order of C. The partitioning divides the set of elementary waves of a

given random choice difference approximation into two classes. The total

magnitude of waves in the first class is small in the sense that their total

contribution to the error has order C independently of whether the sequence is

equidistributed or not. The waves of the second class in a given substrip can

be grouped into polygonal arcs Y in the x-t plane whose magnitude and speed

of propagation are "nearly constant". This leads to an individual treatment of

the arcs Y modelled on the argument used for a single-wave solution to a

Riemann problem. Now if the equidistributed sequence admits a rate of

approximation in the sense that the average number of its elements with index

less than n in a given interval J C (-1,1) satisfies

S(n,J)/n = JJ + c(J)i(n) and lrm *(n) = 0

where the constant c(J) is independent of n, then one may divide (0,T)

into substrips of equal length k(Ax) satisfying

lim k(Ax) 0
Ax+O



and again add the contributions to each stip obtaining in the limit a total

contribution on the order of e provided that the length of the substrips

approaches zero slower than the reciprocal of the error *, i.e. provided that

lim *(l/Ax)/k(Ax) -0 
Ax+O

We recall that the hybridized schemes under discussion employ an

equidistributed sequence and threshold function satisfying (11.1). Given such

and a one can employ a similar two-class partitioning of elementary waves

of the hybridized shceme to strips with length X(Ax) satisfying

lim *(1/Ax)/X(Ax) = 0 and lim £(Ax)/(aAx)1/ 2 = 0
Ax O Ax+O

and show that the total contribution to the error from all waves of the first

class plus all waves of the second class which form arc Y with length greater

than say A(Ax)/2 has the order S in the limit as the mesh is refined. Thus,

one need only show that those segments of arcs Y with length less than

X(Ax)/2 passing through diamonds in RC produce a total contribution which

vanishes in the limit. To this end let us fix a substrip S(Ax) of (0,T)

with length L(Ax) and consider an arc Y of second class waves C. The error

associated with those segments of Y which lie in the set Q of all RC

diamonds in S(Ax) has the order Axlel. Without loss of generality we may

assume that the magnitude of waves of Y remains a constant, denoted lyl,

since from the results of [26] the deviation from a constant leads to terms

whose total sum vanishes in the limit. Hence the problem is to estimate

Ax r(Y)IYI

where r(Y) denotes the number of segments on Y which correspond to diamonds

in 0. Now, it follows from our previous analysis that we have an estimate of

the form
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T(Y)IYI (qS(Ax)}/(oAx)1/

Yes

where T(Y) denotes the number of times that the arc Y passes from 0 to

S1 or from 1c to 9 and where the sum of the quantities q associated with

each strip S(Ax) is bounded independently of Ax for fixed T:

I {q(S(Ax)J : S(Ax) C (O,T)} ( const . I

Therefore, the contribution associated with one strip S(Ax) satisfies

[ Axr(Y)IYI 4 1 T(Y)M(AX)IYI 4 £(Ax)q{S(Ax)}/(oAx)1/2
YES Yes

Summing over all strips S(Ax) in (O,T) yields

I I Axr(Y)JYJ 4 const.X(Ax)/(Ax) 
/2

S YES

which implies that the total contribution vanishes in the limit.

12. THE ENTROPY CONDITION.

In this section we shall show that the limiting solutions u of our

hybridized schemes satisfy Lax's entropy condition which requires that

(12.1) n(u)t + q(u)x  0

in the sense of distributions where n is a strictly convex entropy and q the

associated entropy-flux [211. Since the solutions u under consideration lie

in BV n L it is sufficient to show that

(12.2) f Vtn(u) + Vxq(u)ds 4 0
C

for a substantial class of contours C, e.g. parallelograms whose sides have

slope tAt/Ax. As a corollary of the entropy condition it follows that the

entire sequence of associated difference approximations u(Ax) converges to

u as the mesh is refined in those circumstances where uniqueness is available
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[91; for example, if the initial data u0 (x) gives rise to a piecewise

Lipschitz solution u to a genuinely nonlinear system of two equations in the

sense of [9] and if u satisfies (12.1), then u is unique within the class of

BV fl L solutions satisfying (12.1). The class of piecewise Lipschitz

solutions discussed in (9] contains in particular the classical solution of the

Riemann problem.

Let us first consider an arbitrary conservative scheme in class K. A

simple computation using the compatibility condition

Vn(u)Vf(u) = Vq(u)

shows that

atj{(n,e)} + axq(6(ne)} - a t{8(ws)} - axq(8(w's)}
t x

+ 8tn{(n,w)} + 80x qf(nw)} - 8tn{*(e,s)} - 8xq{J(e,s)}

2 2
o(Iu - usI + lus - Uel

Thus, the everywhere defined piecewise constant approximations u = u(Ax)

associated with a conservative scheme satisfy

2 2f v(u)ds = O(Ax)(Iu w -u sl + lus -u el

for a typical mesh diamond 0 with values uW, us , ue at its west, south and

east vertices. Thus a convergent sequence of difference approximations

u = u(Ax) which is stable in the total variation norm yields a solution u

which satisfies (12.2) for all parallelograms C with sides of slope jAt/Ax,

provided that the maximum magnitude of waves in any bounded set r of the

x-t plane approaches zero as the mesh is refined, i.e.

lim sup{Iu(x ± Axt t At) - u(x,t)i : (x,t) c ri = 0
Ax+O

We note that exactly the same conclusion can be drawn for any scheme whose

generating function is formed by a quadratic perturbation of a conservative
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generator. Of course, in the absence of a condition on the limiting maximum

wave magnitude, the problem of determining whether or not the entropy condition

is satisfied is substantially more difficult.

For the original version of the random choice method, the entropy condition

was verified by Lax [211. For the deterministic verion involving an

equidistributed sequence it follows immediately from the results of Liu (26]

that the entropy condition is satisfied. In the latter case one has

f v(u)ds 4 E+(i - 1,j - 1) + E-(i + 1,j - 1)
as(i,j)

where

AX 0E- f Mu -n (R/AtiUwue))dxi E- n(u ) - n(R(x/Atlu u ))dx

where uw and us denote the values of the corresponding grid function at the

west ind south vertices of the mesh diamond n(i,j). The inequality in (12.3)

arises from the fact that the discontinuities of u(Ax) in R(i,j) satisfy the

entropy condition and the sum of all terms of the form E vanish in the limit.

Therefore in view of our previous analysis, it follows that the limits of

our hybridized scheme satisfy the entropy condition. We need only remark that

the results of Section 11 show that the interior boundary contribution

(associated with the set C and RC) to the contour integral

f vtn(u) + vxq(u)ds
C

vanishes in the limit, since the quantity Ax times the total variation of

u(Ax) around said boundary vanishes in the limit.
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